PRE2018 3 Group4: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
 
(283 intermediate revisions by 8 users not shown)
Line 1: Line 1:
<link rel="shortcut icon" href="https://www.tue.nl/favicon-64.ico" type="image/x-icon">
<div style="font-family: 'Georgia'; font-size: 15px; line-height: 1.5; max-width: 800px; word-wrap: break-word; color: #333; font-weight: 400; box-shadow: 0px 25px 35px -5px rgba(0,0,0,0.75); margin-left: auto; margin-right: auto; padding: 70px; background-color: white; padding-top: 30px;">
<link rel=http://cstwiki.wtb.tue.nl/index.php?title=PRE2018_3_Group4&action=edit"stylesheet" type="text/css" href="theme.css">
<div style="width:calc(100vw - 175px);background-color:#EFEFEF;padding-bottom:35px;position:absolute;top:0;left:0;">
<div style="font-family: 'q_serif', Georgia, Times, 'Times New Roman', serif; font-size: 14px; line-height: 1.5; max-width: 750px; word-wrap: break-word; color: #333; font-weight: 400; box-shadow: 0px 25px 35px -5px rgba(0,0,0,0.75); margin-left: auto; margin-right: auto; padding: 70px; background-color: white; padding-top: 25px;">


= 0LAUK0 - 2018/2019 - Q3 - group 4 =
<div style="display: block; position: absolute; right: 8%;">
; Page navigation
# [[PRE2018_3_Group4 | Root]]
# [[Notes - Group 4 - 2018/2019, Semester B, Quartile 3|Notes from meeting]]
# [[Initial ideas - Group 4 - 2018/2019, Semester B, Quartile 3|Initial ideas]]
# [[Project setup - Group 4 - 2018/2019, Semester B, Quartile 3|Project setup]]
# [[General problem - Group 4 - 2018/2019, Semester B, Quartile 3|General problem description]]
# [[State of the Art - Group 4 - 2018/2019, Semester B, Quartile 3|State of the Art]]
# [[Specific problem - Group 4 - 2018/2019, Semester B, Quartile 3|Specific problem description]]
# [[Present situation - Group 4 - 2018/2019, Semester B, Quartile 3|Present situation]]
# [[Drones - Group 4 - 2018/2019, Semester B, Quartile 3|Drone analysis]]
# [[Solutions - Group 4 - 2018/2019, Semester B, Quartile 3|Solution analysis]]
# [[Airports under a microscope - Group 4 - 2018/2019, Semester B, Quartile 3|Airport analysis]]
# [[Types of Decision Models - Group 4 - 2018/2019, Semester B, Quartile 3 | Decision Model investigation]]
# [[Decision Model - Group 4 - 2018/2019, Semester B, Quartile 3 | Decision Model implementation]]
# [[Decision Model validation - Group 4 - 2018/2019, Semester B, Quartile 3|Decision Model validation]]
# [[Categorizing solutions - Group 4 - 2018/2019, Semester B, Quartile 3|Categorising solutions]]
# [[Web_Application_-_Group_4_-_2018/2019,_Semester_B,_Quartile_3 | Web Application]]
# [[Future - Group 4 - 2018/2019, Semester B, Quartile 3|Future]]
# [[Conclusion - Group 4 - 2018/2019, Semester B, Quartile 3|Conclusion]]
# [[Discussion - Group 4 - 2018/2019, Semester B, Quartile 3|Discussion]]
</div>
 
= 0LAUK0 - 2018/2019 - Q3 - Group 4 =
On this page, we provide a hierarchical overview of the project done by Group 4 in Q3 2018/2019 for 0LAUK0 (Project Robots Everywhere). We start with the formalities where we introduce the group members, provide a small introduction to the project, and talk about the project setup, et cetera. Then, we consider a `Literature Research' and a `Decision Model' section that both provide many new and exciting insights. The hierarchical structure provided below is given in chronological order.
 
<h3>[[One_page_-_Group_4_-_2018/2019,_Semester_B,_Quartile_3|Single page variant]]</h3>
'''Important:''' For the convenience of the reader and in order to adhere to the standards used by all other groups, we also have a single page that consists of the whole project. This page then depicts the complete process in chronological order. When using this page for the final evaluation, one does not have to visit any other pages. It is up to the reader to decide which page to use. The single page can be found [[One_page_-_Group_4_-_2018/2019,_Semester_B,_Quartile_3|here]].
 
== Formalities ==
 
=== Group members ===
The group members of Group 4 are as follows:


== Group members ==
{| class="wikitable" style="border-style: solid; border-width: 1px;" cellpadding="3"
{| class="wikitable" style="border-style: solid; border-width: 1px;" cellpadding="3"
!style="text-align:left;"| Name
!style="text-align:left;"| Name
!style="text-align:left;"| Student ID
!style="text-align:left;"| Student ID
!style="text-align:left;"| Major
|-
|-
| Sander de Bruin|| 1006147
| Jort de Bokx || 1050214 || Software Science
|-
|-
| Jort de Bokx || 1050214
| Sander de Bruin|| 1006147 || Software Science
|-
|-
| Stijn Derks || 1008002
| Stijn Derks || 1008002 || Software Science
|-  
|-  
| Martin de Quincey || 1007047
| Martin de Quincey || 1007047 || Software Science and Applied Mathematics
|-
|-
| Nick van de Waterlaat || 1009357
| Nick van de Waterlaat || 1009357 || Software Science
|-
|-
|}
|}


=== Introduction ===


== Introduction ==
The goal of this wiki page is to show a study and analysis of a robotic subject. This research is an assignment of the course Robots Everywhere (0LAUK0). For this project, students work in a group of five people choosing a subject in the core of robotics to work on, thereby making sure the USE aspects are leading. As is usual in a Wiki, multiple pages will be used rather than considering one extremely long page. Make sure to explore all subpages contained under this page.
 
The goal of this wiki page is to show a study/analysis/design/prototype of a robotic subject. This research is an assignment of the course Robots Everywhere (0LAUK0). For this project, students work in a group of 5 choosing a subject in the core of robotics to work on, thereby making sure the USE aspects are leading.  
 
== Initial ideas ==
*'''Robotic surgery:''' With all the progress in robotics, we have now reached a stage in time where it is (almost) possible to let robots do surgery. There have been quite some recent breakthroughs, and it is also already applied to some scale in hospitals. However, there are some aspects to this robotic technology that need closer investigation.
 
*'''Medical rehabilitation with the help of robots:''' Many people suffer from injuries that may require long-term medical rehabilitation. This rehabilitation is typically complex and takes a lot of trained staff to help guide the patients through the process. Then there might be benefits for both the patients and the staff helping the patients with rehabilitation if robotics were to help the rehabilitation process.
 
*'''Drone interception:''' Between 19 and 21 December 2018, hundreds of flights were canceled at Gatwick Airport, following reports of drone sightings close to the runway. The airport did not have any measures to prevent this issue. Many users of airlines were stranded, and airlines (enterprises) lost. The airport only had detection and tracking devices, but no counter-drone mechanism. Just like birds, drones can cause enormous damage to aeroplane engines and are therefore illegal around airports. However, no{{Citation needed}} airport yet has a fully working anti-drone defence mechanism, while most airports do have anti-bird systems, consisting of noise mechanisms to scare birds away.
 
*'''Drone pesticides:''' An important consequence of the increased global population is the demand for food. In order to meet these demands, farmers require the use of pesticides to ensure enough yield from their crops. However, the overuse of pesticides and fertilizer can have huge negative impacts on society. Hence we the use of drones to analyse the state of farmland and automatically apply fertiliser and pesticides as needed could make a farmer’s job easier, making the production more eco-friendly.
 
*'''Trading bot:''' Trading bots have been used on the stock market for quite some time already, but ever after the boom of cryptocurrencies, the usage of these bots has become ever more increasing. The stakeholders of these bots are people that are active in, for example, the stock market and cryptocurrency market. People could use such a bot in order to achieve a passive income. It would be interesting to design such a bot for interested parties. Furthermore, it would be interesting to consider the ethical discussion regarding the permission to use such trading bots in the stock market.
 
*'''Networking AI:''' Gridlock is problematic in large western cities, but also many large cities with underdeveloped infrastructure in countries like Asia. It massively hinders any form of transport, and also unnecessarily increases pollution. Forms of AI in private cars or forms of public transport such as buses or trains might help reduce this problem. On an abstract level, buses or trains could adjust their schedule or route such that they are deployed at places where passengers are waiting in real time, not where they are expected to be waiting. This way, one might prevent the case where two half-full buses are driving on similar routes. By sharing information and adapting to real-time information, in this case only one bus would be necessary.
 
*'''Use drones to monitor and improve marine life:''' Due to climate change, many problems arise. A large part of these problems emerge in the seas and underwater. Examples include changes to the habitat of marine mammals, irreversible damage to coral reefs, and already endangered species being threatened quicker by their changing environment. A current use for them is flying through and capturing fluid samples of the exhaled fluids of whales, to monitor their health. Specific autonomous robots designed for underwater operation might help monitor the state of coral reefs, and introduce new coral to a reef to support its growth.


Chosen concept: '''Drone interception''' modified such that it can be applied in a more general setting.
=== [[Notes - Group 4 - 2018/2019, Semester B, Quartile 3|Notes from meetings]] ===


== Problem description ==
=== [[Initial ideas - Group 4 - 2018/2019, Semester B, Quartile 3|Initial ideas]] ===
Between 19 and 21 December 2018, hundreds of flights were canceled at Gatwick Airport, following reports of drone sightings close to the runway<ref name="BBC News airport">[https://www.bbc.com/news/uk-england-sussex-46623754 "Gatwick Airport: Drones ground flights"], 20 December 2018. Retrieved on 2019-02-06.</ref>.
A total of 760 flights were disrupted on the 20th of December due to the drone. Naturally, this angered many people whose flight was delayed. Not only does it anger people, but it is also financially bad for the airport organization as all of these people with delayed flights have to be compensated.
The airport did not have any `good' measures to prevent this issue. Gatwick chief operating officer Chris Woodroofe said: `The police are looking for the operator and that is the way to disable the drone'<ref name="BBC News airport">[https://www.bbc.com/news/uk-england-sussex-46623754 "Gatwick Airport: Drones ground flights"], 20 December 2018. Retrieved on 2019-02-06.</ref>.
Woodroofe further elaborates that the police had not wanted to shoot the devices down because of the risk from stray bullets. This is, of course, not something that is to be repeated as this caused a lot of inconvenience for many travelers.
The airport itself only had detection and tracking devices, but no real counter-drone mechanisms available.
Just like birds, drones can cause enormous damage to airplane engines and are therefore illegal around airports.
However, no airport yet has a fully working anti-drone defense mechanism '''citation needed''', while most airports do have anti-bird systems.
These anti-bird systems mainly consist of noise mechanisms to scare birds away. These noise mechanisms do, however, not work against, for example, drones.


With the possibilities of technology increasing each year, we can only expect more of these occurrences to take place.
=== [[Project setup - Group 4 - 2018/2019, Semester B, Quartile 3|Project setup]] ===
''Unmanned aerial vehicles'' (UAVs) are likely to appear more and more as the possibilities of technology advance.
It might in the future be possible for terrorists to obtain killer UAVs that could cause havoc.
We think that we should not sit idle and passively wait for these worst-case scenarios to occur before starting to think about countermeasures.
The recent incident between 19 and 21 December 2018 at Gatwick Airport should already sound an alarm that we should take an active attitude and develop
anti-drone mechanisms. These mechanisms should be able to deal with much more than mere birds and should consider any form of terrorism caused through the airspace.


== Objectives ==
== Literature Research ==


=== [[General problem - Group 4 - 2018/2019, Semester B, Quartile 3|General problem description]] ===


== State of the Art ==
=== [[State of the Art - Group 4 - 2018/2019, Semester B, Quartile 3|State of the Art]] ===


===Game of drones: defending against drone terrorism<ref name="Game of drones">Yin, Tung. [https://scholarship.law.tamu.edu/lawreview/vol2/iss4/5/ "Game of drones: defending against drone terrorism"], Tex. A&M L, 2015. Retrieved on 2019-02-06.</ref>===
=== [[Specific problem - Group 4 - 2018/2019, Semester B, Quartile 3|Specific problem description]] ===
This article discusses the threat of weaponized drone warfare. Not only are drones UAVs that may hinder people at places like for example airports, but they can also be equipped with weaponry, and this potentially makes them extremely dangerous. Weaponized drones could be used in terrorism as they are unmanned and can be operated from a distance, meaning that no people are put at risk. However, for this same reason, it can also be used for military purposes. On November 3, 2002, the era of weaponized drone warfare began when an American drone blasted a car with a missile, killing all six occupants. Since weaponized drones form such a threat to potentially innocent people, the article lays out the three challenges to defending against drone terrorism: detecting potentially hostile drones, identifying them, and destroying or neutralizing them.


The detection of drones could be done by using a radar detection system, where the location and height of a detected object in the air can be calculated. However, the key challenge of the radar system is to determine whether such a detected object is actually a drone. Furthermore, due to the way a radar detector works, a drone can be created using materials such that it will not be detected. Therefore, there is a need for a proper identification system to classify a detected object as a potentially dangerous drone. Identification of any specific aircraft, at present, relies upon broadcasting a coded signal, which is decoded by air traffic control towers. Such that allies and enemies can be identified and to avoid targeting a friendly aircraft. As a result, all aircraft where radar service is provided should require systems that are able to broadcast coded signals for identification. Once a drone has been detected and identified as potentially hostile, it needs to be neutralized. Drones can be shot down, have their guidance systems damaged, or their control signals can be jammed or interfered with. Air-to-air missiles and gunfire, lasers can be an effective weapon against drones. Lastly, electromagnetic attacks that consist of interfering with the GPS signals would make the drone uncontrollable to the pilot and using 'spoofing' could enable an attacker to take control of the drone.
=== [[Present situation - Group 4 - 2018/2019, Semester B, Quartile 3|Present situation]] ===


=== Investigating Cost-effective RF-based Detection of Drones<ref name="RF-based detection of drones">Nguyen, P., Ravindranatha, M., Nguyen, A., Han, R., & Vu, T. [https://dl.acm.org/citation.cfm?id=2935632 "Investigating Cost-effective RF-based Detection of Drones"], ACM, June 2016. Retrieved on 2019-02-06.</ref> ===
=== [[Drones - Group 4 - 2018/2019, Semester B, Quartile 3|Drone analysis]] ===


The focus of the article is on the detection of a drone, such that it can be dealt with. More specifically, a drone detection system that autonomously detects and characterizes drones using radio frequency wireless signals. Where two approaches are proposed, both using inexpensive technology, e.g., WiFi and inexpensive software-defined radios, to automatically detect drones. One active method that detects drones by observing the reflected wireless signal, and a second passive method that listens to the communication between the drone and its controller. In the active method, a Wi-Fi receiver can be used to detect a drone based on the signature of the signal reflected from the propellers of a drone. Similar to a radar, a transmitter broadcasts signals and a receiver captures reflected signals that bounce of a drone. The passive method detects a drone by listening to the communication channel between the drone and its controller using a wireless receiver. Usually, drones communicate with their controllers a few times per second to update its status and to receive commands from the controller. A system could collect wireless samples and observes the signal, analyse them and can then detect a drone's presence.
=== [[Airports under a microscope - Group 4 - 2018/2019, Semester B, Quartile 3|Airport analysis]] ===


== Project setup ==
=== [[Solutions - Group 4 - 2018/2019, Semester B, Quartile 3|Solution analysis]] ===


=== Approach ===
== Decision Model ==


=== Planning ===
=== [[Types of Decision Models - Group 4 - 2018/2019, Semester B, Quartile 3|Decision Model investigation]] ===


=== Milestones ===
=== [[Decision Model - Group 4 - 2018/2019, Semester B, Quartile 3|Decision Model implementation]] ===


=== Deliverables ===
=== [[Decision Model validation - Group 4 - 2018/2019, Semester B, Quartile 3|Decision Model validation]] ===


=== Division of Work ===
=== [[Categorizing solutions - Group 4 - 2018/2019, Semester B, Quartile 3|Categorising solutions]] ===


== USE aspects ==
=== [[Web Application - Group 4 - 2018/2019, Semester B, Quartile 3|Web Application]] ===


=== Users ===
== Wrapping up ==  
As with most projects, we wrap up by looking ahead and thinking about the next steps that can be taken, providing a conclusion regarding the project as a whole, and discussing the process. Furthermore, we verify if all objectives have been meant and what the main takeaways for future projects are.


=== Society ===
The [[Future - Group 4 - 2018/2019, Semester B, Quartile 3|Future]], [[Conclusion - Group 4 - 2018/2019, Semester B, Quartile 3|Conclusion]], and [[Discussion - Group 4 - 2018/2019, Semester B, Quartile 3|Discussion]] pages consider the future, conclusion, and discussion respectively about both the Literature Research and the Decision Model.


=== Enterprise ===
=== [[Future - Group 4 - 2018/2019, Semester B, Quartile 3|Future]] ===


== Conclusion ==
=== [[Conclusion - Group 4 - 2018/2019, Semester B, Quartile 3|Conclusion]] ===


== Discussion ==
=== [[Discussion - Group 4 - 2018/2019, Semester B, Quartile 3|Discussion]] ===


= References =
<references />

Latest revision as of 17:54, 2 April 2019

0LAUK0 - 2018/2019 - Q3 - Group 4

On this page, we provide a hierarchical overview of the project done by Group 4 in Q3 2018/2019 for 0LAUK0 (Project Robots Everywhere). We start with the formalities where we introduce the group members, provide a small introduction to the project, and talk about the project setup, et cetera. Then, we consider a `Literature Research' and a `Decision Model' section that both provide many new and exciting insights. The hierarchical structure provided below is given in chronological order.

Single page variant

Important: For the convenience of the reader and in order to adhere to the standards used by all other groups, we also have a single page that consists of the whole project. This page then depicts the complete process in chronological order. When using this page for the final evaluation, one does not have to visit any other pages. It is up to the reader to decide which page to use. The single page can be found here.

Formalities

Group members

The group members of Group 4 are as follows:

Name Student ID Major
Jort de Bokx 1050214 Software Science
Sander de Bruin 1006147 Software Science
Stijn Derks 1008002 Software Science
Martin de Quincey 1007047 Software Science and Applied Mathematics
Nick van de Waterlaat 1009357 Software Science

Introduction

The goal of this wiki page is to show a study and analysis of a robotic subject. This research is an assignment of the course Robots Everywhere (0LAUK0). For this project, students work in a group of five people choosing a subject in the core of robotics to work on, thereby making sure the USE aspects are leading. As is usual in a Wiki, multiple pages will be used rather than considering one extremely long page. Make sure to explore all subpages contained under this page.

Notes from meetings

Initial ideas

Project setup

Literature Research

General problem description

State of the Art

Specific problem description

Present situation

Drone analysis

Airport analysis

Solution analysis

Decision Model

Decision Model investigation

Decision Model implementation

Decision Model validation

Categorising solutions

Web Application

Wrapping up

As with most projects, we wrap up by looking ahead and thinking about the next steps that can be taken, providing a conclusion regarding the project as a whole, and discussing the process. Furthermore, we verify if all objectives have been meant and what the main takeaways for future projects are.

The Future, Conclusion, and Discussion pages consider the future, conclusion, and discussion respectively about both the Literature Research and the Decision Model.

Future

Conclusion

Discussion