Articles bart
MAY, E., GARRETT, R., & BALLANTYNE, A. (2010). Being mobile: Electric mobility-scooters and their use by older people. Ageing and Society, 30(7), 1219-1237. doi:10.1017/S0144686X10000334
the article is about the increasing use of electric mobility-vehicles by older people in South Australia. the elderly have raised several problems with those vehicles. caretakers and urban planners are also experiencing a lot of problems.according to the users the up to date mobility-scooters have received little attention regarding research . The purpose of the study reported wa s the exploration of the factors that impact the elderly who are using the mobility-scooters, in particular from their perspectives. Data was collected with a survey of current electric mobility-scooter elderly users. Using two focus groups with people who were users the data was determined. The data showed that more than 71% of participants had a scooter for over two years. Most purchased the scooter new and 80 % owned a four-wheel scooter. The scooter where used for shopping, visiting friends and family, and rides for fun and pleasure. Most people used their scooters three to five times each week and travelled between two to five kilometres. The most important findings from the surveys were categorised into three major themes: ‘obtaining a scooter’, ‘the meaning of mobility’ and ‘issues around sharing spaces’. Each is exemplified. The implications for environmental and building design, for the better training of users, and for education are discussed.
M. Hirai, T. Tomizawa, S. Muramatsu, M. Sato, S. Kudoh and T. Suehiro, "Development of an intelligent mobility scooter," 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, 2012, pp. 46-52.
This paper describes a intelligent robot scooter being developed. a lot of elderly are using mobility vehicles. Intelligent mobility scooters will give their users a safer and more appealing transport option such which will allow them to be more mobile and autonomous. It is necessary to develop a scooter which uses sensors and an electronic smart interface. In this paper,they describe hardware options and the configuration of the mobility scooter,. The navigation system, including the localization using grid map matching, path following, and obstacle avoidance, is implemented on the proposed scooter. they presented the results of an experiment in Tsukuba Challenge 2010 and evaluate the proposed systems. The newly developed scooter successfully and autonomously ran a 1.1 km course in a normal living environment.
link :http://ieeexplore.ieee.org/abstract/document/6282345/
Fomiatti, Ryan,Moir, Lois,Richmond, Janet, Millsteed, Jeannine “The experience of being a motorised mobility scooter user” 2014/05/01
the goal of this article was to exploration of the individual experience of being a scooter user also finding out the way scooters impact the users mobile life and social life, daily movement and mobility.they used the following Methods: A framework using purposive sampling and a semi structured interview used with s group of individuals. Questions were categorised according to the International Classification of Functioning, Disability and Health into the three areas , participation and environmental factors. this resulted in the following: three main themes used research were knowledge, engagement and environments. the the theme Knowledge contained a lack of information and barley any training before the purchase . Engagement contained interaction displaying scooter users and resulted in increased participation and social engagement . Environments contained discrimination from the other traffic and shop users and building designs. The conclusions was : The research demonstrated a positive impact on there sociale space from using a scooter, while a lack of knowledge about scooters, batteries, skill ability and design along with environmental challenges of discriminatory attitudes and physical barriers. The research indicates the need for pre-purchase assessments and trials along with improvements in community attitudes and environments.
link: http://www.tandfonline.com/doi/abs/10.3109/17483107.2013.814171
R. Turner Goins, Jacqueline Jones, Marc Schure, Dori E. Rosenberg, Elizabeth A. Phelan, Sherry Dodson, Dina L. Jones; Older Adults’ Perceptions of Mobility: A Metasynthesis of Qualitative Studies, The Gerontologist, Volume 55, Issue 6, 1 December 2015, Pages 929–942
this article is about that optimal mobility is an important element of healthy aging. Yet, older adults perceptions of mobility and mobility preservation are not well understood. The purposes of our study were to, identify studies that report older adults’ perceptions of mobility, conduct a standardized methodological quality assessment, and conduct a metasynthesis of the identified studies. They included studies with community-dwelling adults aged above 65 years, focused on perceptions of mobility pertaining to everyday functioning, used qualitative methods, and were cited in PubMed, Embase, CINAHLPlus, or Geobase databases. Study quality was appraised using the McMaster University Tool. the result they found was: Out of many studies identified, 12 met inclusion criteria. Overall quality of the studies was variable. Metasynthesis produced 3 overarching themes: mobility is part of sense of self and feeling whole, assisted mobility is fundamental to living, and adaptability is key to moving forward. what implications did their findings have : Older adults’ perceptions of mobility can inform interventions that would involve actively planning for future mobility needs and enhance the acceptance of the changes, both to the older adult and the perceived response to changes by those around them. link: https://academic.oup.com/gerontologist/article/55/6/929/2605443
Song, Ui-Kyu; Kim, Byung-Kook; “Development of a DGPS-Based Localization and Semi-Autonomous Path Following System for Electric Scooters” Institute of Control, Robotics and Systems 2011, pp.674-684
the article is about how more and more elderly and disabled people are using electric scooters instead of electric wheelchairs because of higher mobility. However, people with high levels of impairment or the elderly still have difficulties in driving the electric scooters safely. Semi-autonomous electric scooter system is one of the solutions for the safety: Either manual driving or autonomous driving can be used selectively. In this paper, we implement a semi-autonomous electric scooter system with functions of localization and path following. In order to recognize the pose of electric scooter in outdoor environments, we design an outdoor localization system based on the extended Kalman filter using DGPS (Differential Global Positioning System) and wheel encoders. We added an accelerometer to make the localization system adaptable to road condition. Also we propose a path following algorithm using two arcs with current pose of the electric scooter and a given path in the map. Simulation results are described to show that the proposed algorithms provide the ability to drive an electric scooter semi-autonomously. Finally, we conduct outdoor experiments to reveal the practicality of the proposed system.
link: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JOJDCV_2011_v17n7_674