PRE2018 3 Group4: Difference between revisions
Line 95: | Line 95: | ||
We now consider the milestones within the project. Here, we consider Table 1 that displays the accomplishments on a certain date. Furthermore, if there were any learning moments during each of these accomplishments, they will be written down and taken into consideration for the next accomplishment. Note that this table will be regularly updated throughout the course. | We now consider the milestones within the project. Here, we consider Table 1 that displays the accomplishments on a certain date. Furthermore, if there were any learning moments during each of these accomplishments, they will be written down and taken into consideration for the next accomplishment. Note that this table will be regularly updated throughout the course. | ||
{| class="wikitable" style=" | |||
{| class="wikitable" | style="vertical-align:middle;" | border="2" style="border-collapse:collapse" ; | |||
|+ '''Table 1: Milestones''' | |+ '''Table 1: Milestones''' | ||
| | ! align="center"; style="width: 10%" | '''Date''' | ||
! align="center"; style="width: 30%" | '''Accomplished''' | |||
! Accomplished | ! align="center"; style="width: 30%" | '''Learning moments''' | ||
! Learning moments | |||
|- | |- | ||
| | | |
Revision as of 13:15, 7 February 2019
<link rel="shortcut icon" href="https://www.tue.nl/favicon-64.ico" type="image/x-icon"> <link rel=http://cstwiki.wtb.tue.nl/index.php?title=PRE2018_3_Group4&action=edit"stylesheet" type="text/css" href="theme.css">
0LAUK0 - 2018/2019 - Q3 - group 4
Group members
Name | Student ID |
---|---|
Sander de Bruin | 1006147 |
Jort de Bokx | 1050214 |
Stijn Derks | 1008002 |
Martin de Quincey | 1007047 |
Nick van de Waterlaat | 1009357 |
Introduction
The goal of this wiki page is to show a study/analysis/design/prototype of a robotic subject. This research is an assignment of the course Robots Everywhere (0LAUK0). For this project, students work in a group of 5 choosing a subject in the core of robotics to work on, thereby making sure the USE aspects are leading.
Initial ideas
- Robotic surgery: With all the progress in robotics, we have now reached a stage in time where it is (almost) possible to let robots do surgery. There have been quite some recent breakthroughs, and it is also already applied to some scale in hospitals. However, there are some aspects to this robotic technology that need closer investigation.
- Medical rehabilitation with the help of robots: Many people suffer from injuries that may require long-term medical rehabilitation. This rehabilitation is typically complex and takes a lot of trained staff to help guide the patients through the process. Then there might be benefits for both the patients and the staff helping the patients with rehabilitation if robotics were to help the rehabilitation process.
- Drone interception: Between 19 and 21 December 2018, hundreds of flights were canceled at Gatwick Airport, following reports of drone sightings close to the runway. The airport did not have any measures to prevent this issue. Many users of airlines were stranded, and airlines (enterprises) lost. The airport only had detection and tracking devices, but no counter-drone mechanism. Just like birds, drones can cause enormous damage to aeroplane engines and are therefore illegal around airports. However, no[citation needed] airport yet has a fully working anti-drone defence mechanism, while most airports do have anti-bird systems, consisting of noise mechanisms to scare birds away.
- Drone pesticides: An important consequence of the increased global population is the demand for food. In order to meet these demands, farmers require the use of pesticides to ensure enough yield from their crops. However, the overuse of pesticides and fertilizer can have huge negative impacts on society. Hence we the use of drones to analyse the state of farmland and automatically apply fertiliser and pesticides as needed could make a farmer’s job easier, making the production more eco-friendly.
- Trading bot: Trading bots have been used on the stock market for quite some time already, but ever after the boom of cryptocurrencies, the usage of these bots has become ever more increasing. The stakeholders of these bots are people that are active in, for example, the stock market and cryptocurrency market. People could use such a bot in order to achieve a passive income. It would be interesting to design such a bot for interested parties. Furthermore, it would be interesting to consider the ethical discussion regarding the permission to use such trading bots in the stock market.
- Networking AI: Gridlock is problematic in large western cities, but also many large cities with underdeveloped infrastructure in countries like Asia. It massively hinders any form of transport, and also unnecessarily increases pollution. Forms of AI in private cars or forms of public transport such as buses or trains might help reduce this problem. On an abstract level, buses or trains could adjust their schedule or route such that they are deployed at places where passengers are waiting in real time, not where they are expected to be waiting. This way, one might prevent the case where two half-full buses are driving on similar routes. By sharing information and adapting to real-time information, in this case only one bus would be necessary.
- Use drones to monitor and improve marine life: Due to climate change, many problems arise. A large part of these problems emerge in the seas and underwater. Examples include changes to the habitat of marine mammals, irreversible damage to coral reefs, and already endangered species being threatened quicker by their changing environment. A current use for them is flying through and capturing fluid samples of the exhaled fluids of whales, to monitor their health. Specific autonomous robots designed for underwater operation might help monitor the state of coral reefs, and introduce new coral to a reef to support its growth.
Chosen concept: Drone interception modified such that it can be applied in a more general setting.
Problem description
Between 19 and 21 December 2018, hundreds of flights were canceled at Gatwick Airport, following reports of drone sightings close to the runway[1]. A total of 760 flights were disrupted on the 20th of December due to the drone. Naturally, this angered many people whose flight was delayed. Not only does it anger people, but it is also a financial worry for the airport organization as all of these people with delayed flights have to be compensated. The airport did not have any `good' measures to prevent this issue. Gatwick chief operating officer Chris Woodroofe said: `The police are looking for the operator and that is the way to disable the drone'[1]. Woodroofe further elaborates that the police had not wanted to shoot the devices down because of the risk from stray bullets. This is, of course, not something that is to be repeated as this caused a lot of inconvenience for many travelers. The airport itself only had detection and tracking devices, but no real effective counter mechanisms available. This issue is not limited to the setting of airports, but it can be further extended to any hot spot, such as the centre of cities, special events that involve important figures, and more. With the ever-increasing possibilities of technology, it should in the future not be unexpected for a Unmanned aerial vehicle (UAV) to suddenly show up and wreak havoc. This havoc can range from taking pictures of people in public places to spy or stalk them to terrorists that use UAVs to drop bombs in highly populated areas. These occurrences are more likely to appear as the technology we possess increases.
We think that we should not sit idle and passively wait for the worst-case scenarios to occur before starting to think about countermeasures. The recent incident between 19 and 21 December 2018 at Gatwick Airport should already sound an alarm that we should take an active attitude and develop mechanisms that counter UAVs in effective ways. These mechanisms should be able to deal with much more than mere birds and should consider any form of terrorism that can be caused through the airspace.
Objectives
State of the Art
Game of drones: defending against drone terrorism[2]
This article discusses the threat of weaponized drone warfare. Not only are drones UAVs that may hinder people at places like for example airports, but they can also be equipped with weaponry, and this potentially makes them extremely dangerous. Weaponized drones could be used in terrorism as they are unmanned and can be operated from a distance, meaning that no people are put at risk. However, for this same reason, it can also be used for military purposes. On November 3, 2002, the era of weaponized drone warfare began when an American drone blasted a car with a missile, killing all six occupants. Since weaponized drones form such a threat to potentially innocent people, the article lays out the three challenges to defending against drone terrorism: detecting potentially hostile drones, identifying them, and destroying or neutralizing them.
The detection of drones could be done by using a radar detection system, where the location and height of a detected object in the air can be calculated. However, the key challenge of the radar system is to determine whether such a detected object is actually a drone. Furthermore, due to the way a radar detector works, a drone can be created using materials such that it will not be detected. Therefore, there is a need for a proper identification system to classify a detected object as a potentially dangerous drone. Identification of any specific aircraft, at present, relies upon broadcasting a coded signal, which is decoded by air traffic control towers. Such that allies and enemies can be identified and to avoid targeting a friendly aircraft. As a result, all aircraft where radar service is provided should require systems that are able to broadcast coded signals for identification. Once a drone has been detected and identified as potentially hostile, it needs to be neutralized. Drones can be shot down, have their guidance systems damaged, or their control signals can be jammed or interfered with. Air-to-air missiles and gunfire, lasers can be an effective weapon against drones. Lastly, electromagnetic attacks that consist of interfering with the GPS signals would make the drone uncontrollable to the pilot and using 'spoofing' could enable an attacker to take control of the drone.
Investigating Cost-effective RF-based Detection of Drones[3]
The focus of the article is on the detection of a drone, such that it can be dealt with. More specifically, a drone detection system that autonomously detects and characterizes drones using radio frequency wireless signals. Where two approaches are proposed, both using inexpensive technology, e.g., WiFi and inexpensive software-defined radios, to automatically detect drones. One active method that detects drones by observing the reflected wireless signal, and a second passive method that listens to the communication between the drone and its controller. In the active method, a Wi-Fi receiver can be used to detect a drone based on the signature of the signal reflected from the propellers of a drone. Similar to a radar, a transmitter broadcasts signals and a receiver captures reflected signals that bounce of a drone. The passive method detects a drone by listening to the communication channel between the drone and its controller using a wireless receiver. Usually, drones communicate with their controllers a few times per second to update its status and to receive commands from the controller. A system could collect wireless samples and observes the signal, analyse them and can then detect a drone's presence.
Clash of the drones[4]
The motivation for this article was the trouble at Gatwick Airport in London, where flights had to be diverted because a drone was spotted nearby. They stated that in the year 2017, in the UK alone, it has happened over 100 times that a drone was too close to an Airport. These events are undesirable, and thus authorities are trying to find reliable and safe strategies to take down these drones. They state that current countermeasures of taking out drones cause too much collateral damage. One option would be “Geo-fencing”, where drones would simply be fenced out due to software. However, this requires the manufacturers to implement this and the users to not tamper with this, which is considered too risky. The Dutch Ministry of Justice and Security even gave away $30.000 for the best idea to take out drones, so the desire for such technology is high.
Ideas were among others using other drones to take out the undesired drone. Other examples were using airguns to bring the drones to the ground, and training animals such as eagles to take down the drones. The consequences of drones on airports are catastrophic. Even a small drone could seriously damage the windshield of an airplane, so there need to be forbidden zones for drones to guarantee public safety.
Small Remotely Piloted Aircraft Systems (drones), Mid-Air Collision Study
The Department for Transport, the Military Aviation Authority and British Airline Pilots’ Association commissioned a study about what the consequences are of a collision mid-air between a manned aircraft and a drone. The goal of the study was to find the minimal speed at which such a collision would cause critical damage to the aircraft. An important note is that they only focused on windscreen collisions, and did not take e.g. the motors into account. The main results of the study were that for aviation airplanes with windshields that were not birdstrike-certified, the damage done was critical at speeds well below the regular cruise speeds. For airliners, their windscreens are much more resistant. For drones in the 1.2kg class, no critical damage occurred, but for drones in the 4kg class, damage did certainly occur. Another interesting remark is also that how the drone was built has a big influence on the damage done, for example if the motors are covered in plastic or not. Their study also concluded that drones do much more damage than regular birds at equal speeds and with equal weight. This is due to the fact that birds acts more as a fluid when colliding at such speeds, whereas the drones do not due to their hard materials.
Project setup
Approach
Planning
We now take a look at the planning of the project. The planning is presented in the form of an excel sheet that clearly states the tasks that need to be carried out, by whom these tasks will be carried out, an estimation of the time that it takes to carry this task out, if the task has been completed or not, and when it needs to be completed. Furthermore, an orange cell indicates that this will be done during a group meeting, and a blue cell indicates that this will be done outside of a meeting. Note that this planning also considers the division of work to a large degree.
Milestones
We now consider the milestones within the project. Here, we consider Table 1 that displays the accomplishments on a certain date. Furthermore, if there were any learning moments during each of these accomplishments, they will be written down and taken into consideration for the next accomplishment. Note that this table will be regularly updated throughout the course.
Date | Accomplished | Learning moments |
---|---|---|
Final decision of the subject | ||
Finalise literature study | ||
Finish everything regarding possible countermeasures | ||
Final decision of the `best' countermeasure | ||
Finish writing about all possible improvements that can still be made | ||
Finish making the presentation | ||
Finish doing the presentation | ||
Finish the Wiki page |
Deliverables
USE aspects
Users
Society
Enterprise
Conclusion
Discussion
References
- ↑ 1.0 1.1 "Gatwick Airport: Drones ground flights", 20 December 2018. Retrieved on 2019-02-06.
- ↑ Yin, Tung. "Game of drones: defending against drone terrorism", Tex. A&M L, 2015. Retrieved on 2019-02-06.
- ↑ Nguyen, P., Ravindranatha, M., Nguyen, A., Han, R., & Vu, T. "Investigating Cost-effective RF-based Detection of Drones", ACM, June 2016. Retrieved on 2019-02-06.
- ↑ Revell, T. "Clash of the Drones", NewScientist, February 2018. Retrieved on 2019-02-07.