PRE2019 3 Group1

From Control Systems Technology Group
Jump to navigation Jump to search

Group 1

Group members Student number Study Email
C.C. Vreezen 1011476 Medical science and technology c.c.vreezen@student.tue.nl
J. Voet 1386794 Psychology and Technology j.voet@student.tue.nl
F.W.H.M. Ligtenberg 1237054 Biomedical engineering f.w.h.m.ligtenberg@student.tue.nl
J.A. van Leeuwen 1261401 Applied Physics j.a.v.leeuwen@student.tue.nl
P. Gort 1253042 Applied Physics p.gort@student.tue.nl

Introduction

There are many neurodegenerative disorders that have one main occurring symptom in common, tremors. A tremor is an involuntary, rhythmic, muscle contraction and relaxation involving oscillations or twitching movements of one or more body parts. It is the most common of all involuntary movements and can affect the hands, arms, eyes, face, head, vocal folds, trunk, and legs. These tremors have a unknown cause, for example Parkinson’s disease, paraneoplastic syndrome, extrapyramidal syndrome and Idiopathic parkinson. It is very difficult to determine which disorder is related to which tremor. A recent report of the Public Health England shows trends in death numbers of neurological diseases in England between 2001-2014. Mortality associated with Parkinson’s disease and other similar neurodegenerative disorders has increased substantially between 2001-2014. (Darweesh et al., 2018) Since neurodegenerative diseases significantly decrease the quality of life and the incidence is high and still rising, helping these patients becomes of increasing importance for our society.

These neurodegenerative disorders cause tremors with different stages and different rates that affects a patient in their everyday life. Tremors can be caused by different malfunction in the neurons in the part of the brains. This causes difficulties in controlling movements. Tremors worsen because of stress or anxiety and can also cause Bradykinesia; slowed movements, which can cause feelings of tiredness and weakness. This causes a shuffling way of walking and falling since they cannot adjust their footing quickly enough. Moreover, this causes difficulty when buttoning clothes, brushing their teeth or typing something. They can suffer from decreased movement and range of motion due to muscle stiffness, which causes discomfort. Determining the disease is of high importance, since the health risks of each disorder differs. Also a lot of these disorders have serious tremors that contribute to difficulties in maintaining everyday life activities.

The problem we want to address is to distinguish which tremor is related to which disorder by a band. There is no cure for most tremors. The appropriate treatment depends on an accurate diagnosis of the cause. Therefore it is essential to determine the cause, because of medication and health risks differs per disorder. Patients with tremors therefore could benefit from a personalized mechanic band that would measure the amplitude and frequency of the movements which the tremors create. By these measurements, the band makes it possible to determine the disorder beforehand. Which would result in time and resources to diagnose a disorder with tremors, since specialists are less needed.

The band gives a broader insight in determining a tremor disease. A patient that experiences tremors in a beginning stadium can go to a general practitioner just like in a normal situation when one should approach a doctor when having complaints. A band that is easy to use can be recommended by a doctor to run tests for determining the disease of the tremor. The test should consist of about 10 minutes with exercises that are easy to execute and that can be done in the general practice under the supervision of a doctor or an assistant. Shortly after, calculated data from the band of the patient will be sent to the doctor's computer system. A doctor is guided by the data and the general observations from which he can withdraw a conclusion for a disease type. By this, correct medication or further trials can be prescribed. Only thing is that a doctor should always take into account that the band is not 100% reliable and that the doctor should is responsible for his advice to a patient.

Problem statement

"Diagnose similar diseases where tremors occur, by distinguishing the different kinds of tremors based on the amplitude and frequency of these tremors. A doctor can prescribe a patient to wear a sleeve that uses sensors and the model we produced to store data for the doctor to read. Based on this data, a diagnosis can be determined without going to specialists."

Objectives

- Support and help general practitioners in diagnosing the disease of a patient correctly without the help of specialists.

- Make the diagnosis of tremor diseases quicker and easier.

- The band is user-friendly to the patient and the general practitioner.

- The band is easy to use for every age.

Users

Primary users

The primary users are family medicine doctors. The problem that they face is that there aren’t any medical tests for them to use to identify tremor-related diseases. As such it is not always as clear what disease a patient may have when they are in the beginning stages. Now they have to work with symptom-based judgement, even though the main symptom that they are looking at is the same: Involuntary limb movements. The types of medication for tremor diseases differ from disease to disease. This is why it is of great importance to come to the right diagnosis right away. With the help of the band, the family medicine doctors have an additional measuring tool to help determine the right diagnosis.

The second primary users are the patients that suffer from an early stage tremor-related disease. As said previously, the band is useful in getting to the right diagnosis. This prevents cases of misdiagnosis which would result in taking the wrong medication. Taking the wrong medication can be very bad for someone’s general health and it can also cause tedious side effects. Furthermore, the band prevents having to go to a specialist. This can save a lot of money and time of the patient as well as the specialists, who can treat more patients when the band is in use.

Secondary users

Secondary users of the band are the companies that create the product. Eventually, if there is a high enough demand for the product, companies will be producing the band. New technologies such as the band may create good business opportunities for both well-established companies and for newer companies.

Tertiary users

The tertiary users are the neurologists. In case of suspicion with a disease caused by a neurological issue, the patient is normally sent to a neurologist. The goal of the band is that family doctors would already be able to accurately diagnose patients with tremors that result from neurological causes without the help of neurologists. This has positive and negative impacts on neurologists as in this case they would lose a portion of their patients, but they would also have more time to treat other patients that need it. This makes for shorter waiting lists or more time that can be spent on one patient.

Product

The product will be a band. This band will consist of a gyroscope, an accelerometer, and an Arduino. The band uses a model to process the data of the tremors and converts it into a frequency and amplitude spectrum.

Requirements

The requirements of the product are separated for the two primary users

Requirements for family doctors

• The band needs to be able to accurately measure the frequency of the tremors

• The band needs to be able to accurately measure the amplitude of the tremors

• The band needs to be able to use sensor data to compute a model

• The band needs to be able to send data wirelessly to the computer or phone of the doctor via an app

Requirements for the patients

• The band needs to be easy to equip

• The band needs to be comfortable (e.g. by size, weight and feeling)

• The band needs to increase the chance of a correct diagnosis

• The band needs to make the process of diagnosis faster

Approach

- Literature studies

- Interviewing users

Milestones/Planning

- Week 3: Finish literature study

- Week 4: Finish the description of the users and of the relevance of the project

- Week 4, 5 & 6: Work on the model

- Week 7: Organize & finish the wiki page

- Week 8: Presentation

Deliverables

- Wiki page

- Model

- A prototype band

- Presentation

Progress of Project

This project started with developing a soft skeleton to help the physically disabled. Feedback on this was that this subject was too broad for the scope of this class, and not focused on a relevant user problem. The focus then shifted from doing literature research on exoskeletons to finding an important and interesting user problem that we can try to find a solution for. Soft exoskeletons can be used for extra stabilization and support, which is how we thought about Parkinson’s disease.

The most well-known symptom of Parkinson’s disease is tremors, mostly of the arms, which proves to be the most bothersome when performing daily tasks. (National Tremor Foundation, 2020) However, for this only the arms need to be stabilized, so we realized an exoskeleton was not necessary for our demographic. Through further literature study on Parkinson’s disease, it was discovered that diseases with tremors as a symptom are very difficult to distinguish from each other. (Thenganatt & Louis, 2012) To diagnose such a patient correctly takes multiple trips to the hospital, MRI scans and other tests. (Nederlandse Huisartsen Genootschap, 2020) Tremor diseases are found to be distinguishable from each other by the amplitude and frequency, and this can be used to diagnose these diseases correctly. This diagnosis can be made faster and more efficient by our band.

Tremor related diseases

Essential tremor (ET)

ET is a progressive neurological disorder, which causes an involuntary rhythmic pure action tremor, and as such no tremors are experienced while in rest. Bron? ET can affect the whole body but it occurs most often in the hands. Due to the lack of medical tests for this disease, the diagnosis is at first based on the symptoms. When one has the symptoms of ET, the medical history and family history of the patient is reviewed.

Essential tremor signs and symptoms:

• Begin gradually, usually more prominently on one side of the body

• Worsen with movement

• Usually occur in the hands first, affecting one hand or both hands

• Can include a "yes-yes" or "no-no" motion of the head

• May be aggravated by emotional stress, fatigue, caffeine or temperature extremes

A patient with ET can be prescribed multiple types of medication. Firstly, one of these medications is Betablockers, these normally are used for treating high blood pressure but also tend to reduce the tremors of patients. Secondly, anti-seizure medication is often a replacement for people who do not respond to betablockers. Lastly, tranquilizers are anti-anxiety medications for patients whose ET is affected by their emotional state. These are addictive.

Parkinson’s disease (PD)

PD is a neurodegenerative disorder that is the second most prevalent in America today, only surpassed by Alzheimer disease. (Marshall & Hale, 2020) 500.000 people have been diagnosed with PD in the United States, but it is believed that this number would be nearing a million if we allowed for misdiagnosed on undiagnosed cases. It is considered a disease that comes with old age. Costs for treatment are high, around $14 billion, and there is no cure as of now.

PD is caused by a malfunction in the neurons in the part of the brain that produces dopamine. Because of this, it becomes harder to control movement. The cause for this degeneration is still unknown. The greatest risks for PD are old age, genetics or prolonged exposure to toxins such as pesticides. PD can come with both motor and nonmotor symptoms, however motor symptoms are most common. These symptoms can affect one side of the body and then later also affect the other side. Tremors most often occur at rest and subside when the patient performs purposeful movements. They worsen because of stress or anxiety. It can also cause Bradykinesia; slowed movements, which can cause feelings of tiredness and weakness. This causes a shuffling way of walking and falling since they cannot adjust their footing quickly enough. Other motor symptoms include: freezing, sudden stopping, slurred speech and stammering.

The most commonly prescribed medication for PD is Levodopa. Levodopa is processed in the brain, which turns it into dopamine. As PD affects the dopamine production, this is the best medication to help control the symptoms slow movements and stiff body parts. Levodopa is often taken along with Carbidopa, as Carbidopa increases the effectiveness of Levodopa. This results in smaller doses of Levodopa, which reduces the negative side effects. Other types of medication are dopamine agonists. These mimic the effects of dopamine, while they are not as effective as dopamine. Furthermore, anticholinergics have often been used in the past. These block involuntary movements to some degree. However, it is not often used anymore due to its side effects. Amantadine is also used for PD. This increases the availability of dopamine. Lastly, both MAO B inhibitors and COMT inhibitors block the enzyme which is responsible for the breaking down of dopamine in the brain.

Essential tremor vs Parkinson’s disease

ET is occasionally confused with Parkinson’s disease but there are some key differences. ET only causes tremors and there are no other health issues, whereas PD may shorten a patients' lifespan as it causes issues within the brain. Moreover, the tremor affected parts of the body differ. ET involves the hand, head and the voice, while PD cannot be involved with the voice but can be involved with other body parts. Furthermore, ET is a pure action tremor whereas PD is more often a (pure) resting tremor. Lastly, there are differences with the timing of the tremors. ET tremors tend to be of a lower magnitude and with a higher frequency than PD tremors.

Dystonia

The cause of most cases of Dystonia are not currently known. However, in some cases it may be acquired due to brain damage or genetics. Dystonia can occur at any age but it typically starts at an early age. It is characterized by involunatary muscle contractions, causing slow repetitive movements and tremors. Dystonia may affect all parts of the body. There are currently no treatments that can prevent dystonia or slow its progress.

However, there are treatments that can lessen the symptoms. The most effective treatment is botulinum toxin. These injections are put in the affected muscles to prevent muscle contractions and also decreases muscle spasms. One injection can last for multiple months. Other drugs that are used as medication are anticholerinic agents. These block involuntary movements, however due to side effects aren’t used as often. Another type of drugs are GABAergic agents. These drugs regulate the GABA neurotransmitter. Lastly, Dopaminergic agents can be used. These act on the dopamine system which helps the control of muscle movement.

Cerebellar tremor

This type of tremor is caused by damage to the cerebellum and its pathways, which may be the result of a stroke, a tumor, alcoholism, or a disease. It is characterized by slow tremors with a high amplitude.

The tremors always occur in the extremities such as the hands or legs. Cerebellar tremors are currently not effectively treated with the use of medications.

Psychogenic tremor

These tremors are caused by some sort of psychiatric disorder such as PTSD. Its tremors can be all types of tremors but are characterized by a few things: Its onset is always very sudden and may affect any part of the body. It is also affected by stress levels.

(Enhanced) Physiologic tremor

Any human has a small tremor in their hands and fingers. This is a physiologic tremor. Physiologic tremor is not related to a disease but rather a human phenomenon. This tremor can be temporarily enhanced however due to drugs, drug withdrawal and some medical conditions.

Design

Band

If a patient experiences tremor symptoms, they pay a visit to the family doctor. Their doctor can then precribe them to wear this band according to the instruction manual. This band then collects data about the amplitude and frequency of the tremors of the patient.......

In order for the sleeve to be easily put on by tremor patients, the sleeve needs to have as little fastenings, zippers or buttons as possible. (Parkinson's News today, 2020) Patients can use force, however they just cannot complete actions that require detailed movement. Preferred is loose fitting clothing for easy removal. However, our band needs to stay in place, so making the band very loose would cause a hazard in case the band falls off of their arm. An elastic band that is not uncomfortably tight would be the best fit, since this band will stay in place, while the patients are able to put on or remove the band themselves without help.

Instruction manual

Testing should be for around one minute at a time to gather enough data and can be repeated if more data is desired. (Gallego, Rocon, Roa, Moreno, & Pons, 2010)

Model

This model can distinguish between deliberate movements and tremors in order to ensure a correct diagnosis, only based on the actual tremors of the patient. Hier moet nog een beetje uitleg over hoe het model kan zien wat bewuste bewegingen zijn en wat tremors zijn. Dit stond als het goed is in de bron van Jan over het model, dus misschien kan hij dit nog even aanvullen met een (paar) zinnen.

App

Data of the sleeve can be sent to an app on the phone of the doctor using an HC06 module. (Electronoobs, 2020) This allows for the sending of data via a Bluetooth connection between the HC06 module and the phone. The app shows a graph of the data, normalized using a Fourier transform (Ik weet niet of ik dit zo goed zeg, normaliseert een Fourier transform, of is het meer een filter ofzo?), from which the doctor can clearly read out the amplitude and frequency of the tremors of the patients.

By using this app, the doctor can examine the data on his own time and call the patient back later in the day with the results. This saves a lot of back and forth to the hospital for the patient to be examined by a neurologist or other specialists. Misschien kunnen deze laatste twee zinnen beter bij het stukje over hoe een neuroloog nu een diagnose stelt voor een tremorziekte, om te zeggen dat onze manier dus veel sneller en efficienter is etc.

Marketing

Medical

It is challenging to distinguish between Parkinson’s disease and other diseases with tremor symptoms like essential tremor, both in the beginning and progressing stages of the diseases. (Thenganatt & Louis, 2012) Both essential tremor and Parkinson’s disease show tremor types like rest, postural, kinetic an intention tremors. Both diseases could even coexist in the same patient. Now, the diagnosis is determined by looking at things like tremor frequency and amplitude and associated neurological findings. Laboratory testing may also aid in differentiating these two diseases. Tests like this include: “accelerometry and surface electromyography, spiral analysis, dopamine transporter imaging, olfactory testing and, eventually, postmortem histopathology. These tests have limitations and their diagnostic utility requires additional study.” (Thenganatt & Louis, 2012) This difficulty with diagnosis shows the practicality of a model that could acquire data from which the doctor could determined the correct diagnosis, thus bypassing extensive clinical testing.

Frustration

PD patients get frustrated when they are dependent on partners or carers for performing daily tasks. (National Tremor Foundation, 2020) They often lack necessary confidence when these helpers are not there. Simple household tasks like cleaning and cooking are really difficult or even impossible. Carrying lightly weighted objects makes these tremors even worse. (Robakis & Louis, 2014) An early and correct diagnosis is thus very important to improve the quality of life of patients with tremor symptoms.

Ethical considerations

It is of utmost importance to pay attention to the balance between benefiting the patients’ quality of life, and avoiding damage, risk or injury. (Bulboacă, Bolboacă, & Bulboacă, 2017)

Most concerns around electronic health records (EHRs) like the data the model will calculate and store are around privacy, confidentiality and the jeopardization of autonomy. (Ozair, Jamshed, Sharma, & Aggarwal, 2015) EHRs are massively being implemented because of their several advantages over paper records, since they increase healthcare access, decrease costs and improve care quality. Autonomy can be taken away from patients if their data is shared without their knowledge. Because of this, a patient might choose to withhold important information in fear of their data being leaked. This can cause suboptimal treatment plans with undesired outcomes. Following privacy and confidentiality guidelines, information about a patient can only be shared with third parties with the patients’ consent. Clinical data is confidential and must always be safeguarded. When this patient cannot give informed consent because of mental capacity or old age, this decision falls upon their guardian or legal representative. Data leaks violate a patients’ privacy and thus damage trust in the health care system as a whole. The fact that the privacy and autonomy of patients can be compromised when collecting data from them in a clinical setting is an ethical question that needs to be at the forefront of the development of this sleeve.

Moreover, when can a doctor decide if this sleeve should be worn by a patient? Under which conditions should the sleeve be applied? What should a patient expect from the sleeve? These conditions should be determined before usage to avoid conflict. Little guidance exists in health care, which results in competing pressures and affects the way that the sleeve is put into practice. (Foye et al, 2002)

Beyond conflicts also the clinical reasoning process is being affected by reimbursement or money issues and this raises significant concerns about the way in which we assess the quality of the provided services of the sleeve. If the sleeve is not in the family medicine budget, it will not see the light of day. If the patient needs to buy it to own it and be able to use it, they will only do so if the symptoms become severe. By this time, treatment could have been started way earlier, combating these symptoms.

Another closely related issue that arises is that the patient will get less attention from health care professionals compared to now. This can feel less personal, so patients might not feel like they get the care they deserve, even though this model makes the diagnosis more accurate and faster.

Current state of art

Today a lot of tremor types are known, but still, there is a lot to investigate about these tremors. There are a lot of causes of tremors: neurological disorders, neurodegenerative disorders and disorderly conditions that include damage to the brain (e.g. stroke). Other causes are drugs, alcohol, smoking, overactive thyroid or liver failure, lack of sleep, lack of vitamins, increased stress or a cold. Moreover, magnesium and thiamine deficiency can cause tremors. (Chen et al, 2017 & Marshall et al, 1956). Unless there is an underlying issue that causes the tremors, for example, cancer or drug-related tremors, there aren’t any specific medical tests to diagnose for a lot of the diseases that cause these tremors. The most prominent examples of this are Parkinson’s disease (PD) and Essential tremor. A neurologist diagnoses a patient with tremors by holding an anamnesis, looking at clinical characteristics and neurological examination. (Federation of Medical specialists, 2020) In case of suspicion of a certain disease, there are tests that can help support this suspicion. For example, in the case of PD, a dopamine transporter scan can be made. This process to get to a diagnosis is done by ruling out other diseases. Not all causes, frequencies and amplitudes of all existing tremors are clear. However, in order to try and distinguish between tremor diseases, specific frequencies for some disease tremors have been determined. These frequencies can then be related to certain tremor types and therefore also certain diseases.

However, a tremor frequency can vary over time in some diseases. (Hellwig et al, 2009) In Parkinson’s disease and Essential tremor the instantaneous tremor frequency can change by fractions of 1 Hz over a period of seconds, either spontaneously or during voluntary paced contraction of another limb. In psychogenic tremors, tremors in all involved limbs appear to have a common oscillator. By revealing frequency dissociation among physically contracting muscle groups, a feature difficult to detect in clinical examination, multi-limbed recording in both spontaneous and paced conditions help in distinguishing psychogenic tremor from non-psychogenic tremors. (O’Suilleabhain, 1998). Still, there is a lot of missing information about the exact frequencies of certain tremors under certain conditions.

So far there are few techniques on the market which can measure kinematic measurements of tremulous activity, but these stay within boundaries. With a tremor stability index, for example, Parkinson’s disease tremor can be discriminated from essential tremor with high diagnostic accuracy. (Di Biase et al., 2017) The tremor stability index is derived from kinematic measurements of tremulous activity. This sensor consists of an accelerometer to measure the linear acceleration caused by the vibrations and a gyroscope which determines the angular position. The data of these two components is used to continuously measure the position of the limb and can be mapped out to create a frequency and amplitude spectrum of the tremors of a patient. However, there is not a product yet that can really measure the differences between multiple tremors, instead of distinguishing two tremors. More investigation into frequencies and amplitudes of each of the tremor types is needed for writing an algorithm of a product. Also, very accurate machinery is needed to finetune measuring tremors frequencies. In table 1 is shown what types of tremors are caused by what and which frequency each tremor type displays. As is shown in table 1, still not all frequencies of different tremors are known. Table 2 shows the classification of tremors by the position which accentuates the tremor.

Literature study

Femke

Breen, J. S. (2015). The exoskeleton generation – disability redux. Disability & Society, 30(10), 1568–1572. https://doi.org/10.1080/09687599.2015.1085200 https://www-tandfonline-com.dianus.libr.tue.nl/doi/full/10.1080/09687599.2015.1085200

This article talks about the implications with on the one side the increasing acceptance of disability, and on the other side the rapid scientific developments in the medical field. If you could just function as a non-disabled person again with the help of an exoskeleton, would you still be able to choose to not use this medical advancement? Would you still have a free choice in this, or are you frowned upon when you do not want to “fix” your disability?

Association for Computing Machinery (ACM). (2020, 02 04). code-of-ethics. Opgehaald van https://www.acm.org/: https://www.acm.org/code-of-ethics

This website states the ethical codes for computing machinery. Exoskeletons would violate some of these codes, such as 1.1 "Be fair and take action not to discriminate" and 1.4 "Contribute to society and human well-being"

1. Greenbaum, Dov., 'Ethical, Legal and Social Concerns Relating to Exoskeletons.' ACM SIGCAS Computers and Society 45, no. 3 (2015): 234-239. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2843109

This article talks about ethical implications such as financial availability (with exoskeletons costing as much as a luxury car), and the dehumanization of soldiers or workers using these exoskeletons (overworking employees and dehumanizing warfare and the humans that fight in that war)

Pauline Maurice, Ludivine Allienne, Adrien Malaisé, Serena Ivaldi. Ethical and Social Considerations for the Introduction of Human-Centered Technologies at Work. IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), 2018, Genova, Italy. hal-01826487 https://hal.archives-ouvertes.fr/hal-01826487/document

This research paper talks about the importance of, aside from existing ethical guidelines, complementing this with an analysis of the social impact of this exoskeleton technology. They studied the opinions of factory workers (so people who are more at risk of physical injuries) and people outside this environment

Bissolotti, L., Nicoli, F., & Picozzi, M. (2018). Domestic Use of the Exoskeleton for Gait Training in Patients with Spinal Cord Injuries: Ethical Dilemmas in Clinical Practice . Frontiers in Neuroscience , Vol. 12, p. 78. Retrieved from https://www.frontiersin.org/article/10.3389/fnins.2018.00078 https://www.frontiersin.org/articles/10.3389/fnins.2018.00078/full

This research paper evaluates some ethical questions about the domestic use of a robotic exoskeleton (ReWalk Robotics) for gait assistance in patients with a spinal cord injury. “This device is presently FDA and EC market approved and it is now available”. It talks about ethical concerns like financial coverage because of personal resources, but learning to walk again is of high priority for patients

(Handig boek over “lower limb wearable robotics” en welke onderdelen het allemaal nodig heeft en wat daar de challenges van zijn: https://app.knovel.com/web/toc.v/cid:kpWESDCA03/viewerType:toc//root_slug:wearable-exoskeleton-systems?kpromoter=marc)

Pim

One yet existing exoskeleton is the RUPERT (Robotic upper extremity repetitive trainer). This device has 5 actuated degrees of freedom which are driven by compliant and safe pneumatic (operated by air or gas under pressure.) muscle actuators. This helps with shoulder elevation, elbow extension, forearm supination (turning your arm outwards) and humeral external rotation. There is no gravity compensation for this exoskelet. The system is lightweight and uses a PID-based controller combined with an ILC (iterative learning controller) controller. (Balasubramanian, 2008) https://ieeexplore.ieee.org/document/4625154

The state of the art of currently available lower limb assistive exoskeletons is presented in this paper. The functional abilities and the mechanism designs are described. In conclusion, there is still a lot to improve on assistive exoskeletons like choosing the proper and effective tools methods, developing user friendly interfaces and making the devices more affordable. (Kapsalyamov, 2019) https://ieeexplore.ieee.org/abstract/document/8759880

To operate a robotic exoskeleton a control system is needed to monitor an output of electrical activity sensors which are disposed on the human operator. The control system reacts automatically an the step the human makes, choosing from a plurality of different modes. Eventually the operating mode selected will determine the response the system will have to make. (Wilkinson, 2014) https://patents.google.com/patent/US9339396B2/en

The lower-limb exoskeleton is designed to provide weight-bearing assistance for strength and endurance augmentation. It has 10 degrees of freedom. A trajectory learning scheme based on RL (reinforcement learning) and DMP (dynamic movement principles) is present to give assistance to human walking. A two-level plan is presented, the first one concerns the ZMP (zero-moment-point) within the ankle joint for the supported leg. For this purpose the inverted pendulum approximation is utilized, this is done with the so called locomotion parameters. The second level models the joint trajectories learned by the DMP. The RL is now adopted to learn these trajectories so that it can eliminate all the uncertainties in the joint space. The experiments show that it is an effective method for minimizing disturbances and uncertainties. (Yuan, 2019) https://dr.ntu.edu.sg/handle/10356/88973

The robots used for physical rehabilitation allow the patient a compliance and a quantitative, more accurate monitoring of the performance of the patient. However when the patients go back home, it is logistically not possible to keep this same kind of support. Recent research in soft materials for designing robotic devices can make this possible. These are made of fabric and elastomers, is a promising way of delivering power and being ergonomic. Features like assisting the elbow joint and compensating the gravitational forces with a controller are developed and evaluated. It is tested on both the kinetics and kinematics of healthy people. (Xiloyannis, 2019) https://ieeexplore.ieee.org/abstract/document/8718029

bibliography

Balasubramanian, S. (2008). RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions. Vancouver, BC, Canada: IEEE.

Kapsalyamov, A. (2019). State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. Nazarbayev: IEEE.

Wilkinson, L. J. (2014). Robotic exoskeleton multi-modal control system . US: Harris Corp.

Xiloyannis, M. (2019). Development and validation of a soft robotic exosuit for assistance of the upper limbs. Singapore: Nanyang Technological University.

Yuan, Y. (2019). DMP-based Motion Generation for a Walking Exoskeleton Robot Using Reinforcement Learning. Liverpool: IEEE.

Jan

The IHMC exoskeleton is a suit that can be used to gain more strength. The first prototypes were targeted for walking assistance for persons with lower paralysis. The goal is to successfully enable a person to walk a straight line of a distance of 15 feet without human assistance. https://ieeexplore.ieee.org/abstract/document/5152394

In this paper the development of a lower limb exoskeleton is described. These twin legs are powered by pneumatic muscle actuators. These are low mass high power to weight and volume actuation system. These “muscles” being pneumatic means that a more natural muscle like feeling is achieved. This exoskeleton is mostly used for rehabilitation. https://ieeexplore.ieee.org/abstract/document/1639137

CRUX: compliant robotic upper-extermity exosuit. This exosuit is a lightweight (1.3 kg), has flexible multi-joitn design for portable augmentation. The CRUX also maintains the ability to freely move why wearing it. Mostly used for physical therapy and in extreme environments. It is mostly used for people suffering from stroke. It can help these people with the rehabilitation. Most of these rehabiliations now a days succeed. CRUX can provide a solution for this. https://ieeexplore.ieee.org/abstract/document/8009482

In this article a exosuit is talked about that can help people with hip problems. It uses a backpack frame to connect to the torso. Beneftis of using this method is that exosuits eliminate the problem regarding the alignment of a rigid frame to the biological joints, furthermore the inertia of the joints can be extremely low, meaning less muscle power has to be used. A spooled-webbing of actuators is attached onto the back of the user. These actuators can assist the user. Due to this mechanics more torque is achieved which means that for the same movement 30% less power is needed. https://www.sciencedirect.com/science/article/abs/pii/S0921889014002103

In this article the biomechanical and physiological effects of a multi-joint soft exosuit are assessed. This exosuit can apply a assisting torque to the hip and ankle joints during walking. This study has looked at the effects of the exosuit on the characteristics of the movement of humans. It appeared that the suit is able to support most of the power that is needed to walk. However there is a decline in kinematic performance with this suit on. This is technical limitation. https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-016-0150-9

bibliography

Hian Kai Kwa (2009), Development of IHMC Mobility Assist Exoskeleton, IEEE

Costa, N. (2006), Control of a Biomimetic "Soft-actuated" 10DoF Lower Body Exoskeleton, Pisa, Italy, IEEE

Lessard, S (2017), CRUX: A compliant robotic upper-extremity exosuit for lightweight, portable, multi-joint muscular augmentation, Londen, UK, 2017

Asbeck, Alan T. (2015), Soft exosuit for hip assistance, Robotcs and Autonomous Systems

Panizzolo, Fausto A. (2016), A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking, Journal of NeuroEngineering and Rehabilitation

Jorn

Chen, B (2017) A wearable exoskeleton suit for motion assistance to paralysed patients, Journal of Orthopaedic Translation, https://doi.org/10.1016/j.jot.2017.02.007

This is a study performed in order to help, the ever increasing amount of, paralysed patients to regain control over their limbs using a wearable exoskeleton

H. Kobayashi, H. Suzuki, H. Nozaki and T. Tsuji, "Development of Power Assist System for Manual Worker by Muscle Suit," RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju, 2007, pp. 332-337. https://ieeexplore.ieee.org/document/4415104

This paper researches the application of a ‘muscle suit’ that will provide muscular support for manual workers. If the application in this scene will succeed then the muscle suit can be taken further to help the elderly or paralysed patients. But as these categories inquire more risks it is necessary to test it on manual workers beforehand.

R. Auberger, C. Breuer-Ruesch, F. Fuchs, N. Wismer and R. Riener, "Smart Passive Exoskeleton for Everyday Use with Lower Limb Paralysis: Design and First Results of Knee Joint Kinetics," 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, 2018, pp. 1109-1114. https://ieeexplore.ieee.org/abstract/document/8488119

This paper introduces a new orthotic system that supports people with lower limb paralysis in their everyday life.

B. Dellon and Y. Matsuoka, "Prosthetics, exoskeletons, and rehabilitation [Grand Challenges of Robotics]," in IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 30-34, March 2007. https://ieeexplore.ieee.org/abstract/document/4141030

The paper briefly discusses the history of artificial limbs and describes present prosthetics, exoskeletons and robotic rehabilitation and the challenges in prosthetics and exoskeletons

M. Aach, O. Cruciger, M. Sczesny-Kaiser, O. Höffken, R. Ch. Meindl, M. Tegenthoff, P. Schwenkreis, Y. Sankai, T. A. Schildhauer, Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study, The Spine Journal, Volume 14, Issue 12, 2014, Pages 2847-2853, ISSN 1529-9430, https://doi.org/10.1016/j.spinee.2014.03.042.

This research tested if the HAL exoskeleton is safe and whether it improves functional mobility. The patient sample consisted of eight patients with chronic spinal cord injury. The results showed highly significant improvements to the functional mobility without the exoskeleton in the end.

Chantal

Lee, R. C. H., Hasnan, N., & Engkasan, J. P. (2017). Characteristics of persons with spinal cord injury who drive in Malaysia and its barriers: a cross sectional study. Spinal Cord, 56(4), 341–346. https://doi.org/10.1038/s41393-017-0034-2 In this article the importance of the availability to drive after obtaining a physical impairment for SCI is described. Also it is stated that driving is a very important factor for rehabilitation. It is explained that there are various reasons not for driving with a physical impairment.

Zuk, M. (2019). Autonomy - a way for loneliness. analysis of the experience of loneliness of people with physical disabilities. Autonomy, 1633-1640. https://www.ncbi.nlm.nih.gov/pubmed/31586975 This article talks about the importance of autonomy as valuable asset in the lives of societies and individuals and causing the problem of loneliness. The aim of the article is the characteristics of psychological mechanisms accompanying the experience of loneliness by people with mobility disabilities.

Plus, M. (2020). Disabilities. Geraadpleegd op 13 februari 2020, van https://medlineplus.gov/disabilities.html This article talks about the difficulties and limits of the impaired in normal daily lifestyle activities. It also explains the capabilities of Mobility impaired.

Bray, N., Edwards, R. T., Squires, L., & Morrison, V. (2019). Perceptions of the impact of disability and impairment on health, quality of life and capability. BMC Research Notes, 12(1). https://doi.org/10.1186/s13104-019-4324-y This article describes a research project that examines student perceptions of what it would be like to live with a physical or sensory impairment, and how adaptation influences health and quality of life. Mobility impairment is perceived to have the largest impact on health status.

Toro-Hernandez, M. L., Villa-Torres, L., Mondragón-Barrera, M. A., & Camelo-Castillo, W. (2020). Factors that influence the use of community assets by people with physical disabilities: results of participatory mapping in Envigado, Colombia. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-8285-9 This article is about a research to identify the factors at the levels of the socio-ecological framework, and their interaction, that influence the use of community assets among people with physical disabilities and community stakeholders. It calls for stronger enforcement of the existing legal framework through articulated work between different stakeholders, so that people with disabilities can enjoy community assets.

Planning

What has to be done Person(s)
Week 3
  • Tutor meeting 2
  • Review of previous week
  • Starting on introduction
  • Making the planning
  • Contacting people for interviews
  • Updating wiki
  • Finishing self study
  • Finishing literature
  • All
  • All
  • Femke
  • Jan
  • Pim
  • Jorn
  • Chantal, Jorn, Jan
  • All
Week 4
  • Tutor meeting 3
  • Describe different users
  • Explain why our project is relevant
  • Explain what Parkinson is (finish introduction)
  • All
  • Chantal, Jan
  • Pim, Jorn
  • Femke, Chantal, Jorn
Week 5
  • Tutor meeting 4
  • Start working on model
  • Start working on design
  • All
  • All
  • All
Week 6
  • Tutor meeting 5
  • Finishing model
  • Finishing design
  • All
  • All
  • All
Week 7
  • Tutor meeting 6
  • Putting everything on wiki
  • Checking for fault on wiki
  • All
  • All
  • All
Week 8
  • Finshing the wiki
  • Prepare presenation
  • All
  • All

Time management

Week 3 log:

Name Student number Time spent Break-down
Jan van Leeuwen 1261401 14 hours Literature research ( 9 hrs), working on planning ( 2 hrs), meeting x2 ( 3 hrs)
Jorn Voet 1386794 16 hours Literature research (9 hrs)

Meeting x2 (3 hrs) Work on types of PD (4 hrs)

Pim Gort 1253042 18 hours Literature research (8 hrs)

collected data parkinson (2 hrs) mailing + calling (2 hrs) meeting 2x (3 hrs)

Femke Ligtenberg 1237054 18 hours Literature research (8 hrs), worked on introduction (4 hrs), meeting x2 (4 hrs), working on records of meetings (2 hrs)
C.C. Vreezen 1011476 23 hours Literature research (9 hrs),

Working on the introduction (3 hrs), Meeting x2 (3hrs), Mailing State of the art (6 hrs), Adjusting introduction (2hrs)


Week 4 log:

Name Student number Time spent Break-down
Jan van Leeuwen 1261401 14 hours Thinking about model, finding literature (6 hrs), meeting (2 hrs)
Jorn Voet 1386794 18 hours Literature research (8 hrs)

User analysis (6 hrs) Meeting x2 (4 hrs)

Pim Gort 1253042 20 hours interview ( 2 hrs), model orientation (8 hrs), meeting 2x(4 hrs), Literature research on exercises Parkinson patients (6 hrs)
Femke Ligtenberg 1237054 22 hours Literature research (8 hrs), working on the marketing of our product (3 hrs), meeting x2 (4 hrs), working on pitch (2 hrs), working on wiki page (5 hrs)
C.C. Vreezen 1011476 hours

References

Bulboacă, A. E., Bolboacă, S. D., & Bulboacă, A. C. (2017). Ethical considerations in providing an upper limb exoskeleton device for stroke patients. Medical Hypotheses, 101, 61–64. https://doi.org/https://doi.org/10.1016/j.mehy.2017.02.016

Chu, C.-Y., & Patterson, R. M. (2018). Soft robotic devices for hand rehabilitation and assistance: a narrative review. Journal of NeuroEngineering and Rehabilitation, 15(1). https://doi.org/10.1186/s12984-018-0350-6 Darweesh, S. K. L., Raphael, K. G., Brundin, P., Matthews, H., Wyse, R. K., Chen, H., & Bloem, B. R. (2018). Parkinson matters. Journal of Parkinson’s Disease, 8(4), 495–498.

Electronoobs. (2020, 03 07). http://www.electronoobs.com/. Opgehaald van electronoobs.com: http://www.electronoobs.com/eng_arduino_tut20_1.php

Foye, S. J., Kirschner, K. L., Brady Wagner, L. C., Stocking, C., & Siegler, M. (2002). Ethical Issues in Rehabilitation: A Qualitative Analysis of Dilemmas Identified by Occupational Therapists. Topics in Stroke Rehabilitation, 9(3), 89–101. https://doi.org/10.1310/7824-1ae0-gff0-kt55

Gallego, A. J., Rocon, E., Roa, J. O., Moreno, C. J., & Pons, J. L. (2010). Real-Time Estimation of Pathological Tremor Parameters from Gyroscope Data. Sensors , Vol. 10. https://doi.org/10.3390/s100302129

Koh, T. H., Cheng, N., Yap, H. K., & Yeow, C.-H. (2017). Design of a Soft Robotic Elbow Sleeve with Passive and Intent-Controlled Actuation. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00597

Marshall, K., & Hale, D. (2020). Parkinson Disease. Home Healthcare Now TA - TT -, 38(1), 48–49. https://doi.org/10.1097/NHH.0000000000000844 LK - https://tue.on.worldcat.org/oclc/8492212894

National Tremor Foundation. (2020, 03 01). https://tremor.org.uk/orthostatic-tremor.html. Opgehaald van https://tremor.org.uk: https://tremor.org.uk/orthostatic-tremor.html

Nederlandse Huisartsen Genootschap. (2020, 03 02). https://www.nhg.org/standaarden/volledig/nhg-standaard-ziekte-van-parkinson? Opgehaald van https://www.nhg.org/: https://www.nhg.org/standaarden/volledig/nhg-standaard-ziekte-van-parkinson?tmp-no-mobile=1

Ozair, F. F., Jamshed, N., Sharma, A., & Aggarwal, P. (2015). Ethical issues in electronic health records: A general overview. Perspectives in Clinical Research, 6(2), 73–76. https://doi.org/10.4103/2229-3485.153997

Parkinson's News today. (2020, 03 06). https://parkinsonsnewstoday.com/. Opgehaald van Parkinson's News today: https://parkinsonsnewstoday.com/2018/01/18/18-tips-getting-dressed-easier-parkinsons-disease/

Robakis, D., & Louis, E. D. (2014). Another case of “shopping bag” tremor: a difficult to classify action tremor. Tremor and Other Hyperkinetic Movements (New York, N.Y.), 4, 269. https://doi.org/10.7916/D8PV6HVJ

Thenganatt, M. A., & Louis, E. D. (2012). Distinguishing essential tremor from Parkinson’s disease: bedside tests and laboratory evaluations. Expert Review of Neurotherapeutics, 12(6), 687–696. https://doi.org/10.1586/ern.12.49

Velandia, C. C., Tibaduiza, A. D., & Vejar, A. M. (2017). Proposal of Novel Model for a 2 DOF Exoskeleton for Lower-Limb Rehabilitation. Robotics , Vol. 6. https://doi.org/10.3390/robotics6030020

Yap, H. K., Lim, J. H., Nasrallah, F., & Yeow, C.-H. (2017). Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors. Frontiers in Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00547

Yap, H. Kai., Sebastian, Frederick., Wiedeman, Christopher., & Yeow, C.-H. (2017). Design and characterization of low-cost fabric-based flat pneumatic actuators for soft assistive glove application. 2017 International Conference on Rehabilitation Robotics (ICORR). https://doi.org/10.1109/icorr.2017.8009454\