PRE2019 3 Group17
Group Members
Name | ID | Major | |
---|---|---|---|
Amit Gelbhart | 1055213 | a.gelbhart@student.tue.nl | Sustainable Innovation |
Marleen Luijten | 1326732 | m.luijten2@student.tue.nl | Industrial Design |
Myrthe Spronck | 1330268 | m.s.c.spronck@student.tue.nl | Computer Science |
Ilvy Stoots | 1329707 | i.n.j.stoots@student.tue.nl | Industrial Design |
Linda Tawafra | 0941352 | l.tawafra@student.tue.nl | Industrial Design |
Work Breakdown
Week 1 | Week 2 | Week 3 | ||||
---|---|---|---|---|---|---|
Name | Total Hours | Work Breakdown | Total Hours | Work Breakdown | Total Hours | Work Breakdown |
Amit Gelbhart | ||||||
Marleen Luijten | ||||||
Myrthe Spronck | ||||||
Ilvy Stoots | ||||||
Linda Tawafra |
Problem Statement and Objectives
Problem Statement
“Coral reefs worldwide are increasingly damaged by anthropogenic stressors”(Gordon, et al., 2019). We look towards alternative methods of reviving dying and dead coral reefs. Acoustic enrichment is a tested method that seems to be able to bring fish back to coral reefs. Robots could be created to automate labor and time-intensive work, as well as remove the skill floor required to revive a local reef.
Objectives
The main objective of the robot is to prevent reefs from downgrading by improving the coral reefs resilience and bring back dead coral reefs through attracting fish. Additionally, the robot helps with monitoring and managing coral reefs by automating manual labor and improving data efficiency.
Prevent downgrading
Due to climate change, and …… (SOURCE MYRTHE) the number of coral reefs is declining. One of the factors that could prevent the downgrading of a reef, is the resilience of a reef (SOURCE MYRTHE). If the reef has better resilience, it will be able to better withstand downgrading or bounce back quicker (SOURCE MYRTHE). The robot improves the resilience of the reef by …. increasing biodiversity?/ maintaining biodiversity? (SOURCE????).
Bring back dead coral reefs
For a coral reef to flourish, the wide biodiversity of animals is needed. Fish that lay their larvae on corals are one of the essential components in a healthy reef ecosystem. However, once corals are dying, the fish do not use them for their larvae and the whole system ends up in a negative cycle. By playing sounds, with different frequencies, fish are tricked into believing that the corals are alive and come back with their larvae. This attracts other marine animals, which causes the entire system to flourish again (SOURCE!!).
Monitor and manage coral reefs
The monitoring of coral reefs nowadays is a time consuming and cumbersome method, which requires a lot of manual activities (SOURCE!!). The robot is able to scan reefs and provide researchers with an accurate and continuous database regarding the status of the coral and the population of fish and other marine animals. This reduces the number of manual actions that otherwise would have been performed by divers and researchers. The database allows researchers to study reef ecosystems worldwide, which leads to a better understanding of the ecosystems and allows better management.
Literature Study
Users and Needs
Tasks:
- Navigation through the reef, scan reef, take pictures, know where and which sounds, communication???, battery? energy generation? share database
- Guide fish to the reef
- No more need for divers to go down
What the robot should be able to do?
For whom would the invention of this robot be of great interest? One of the great benefits of the coral reef, is that in case of natural hazards, such as coastal storms, the reef on average can reduce the wave energies by 97% (Ferrario, 2014). Meaning that it can prevent storms and flooding and thus protect the coastal inhabitants. Since roughly 40% of the world’s population is located within a range of 100 km from the coast (Ferrario, 2014), protecting the coral reef will result in a reduction of a great amount of damage. This would not only be in regards to human lives but also to environmental destruction. In case of these natural hazards, it is the government that will be imputable for the caused devastation. This is why they are the main users of a robot that helps recover the coral reef.
In order to prevent further downgrading and instead increase the growth of the reef, a large biodiversity of animals is required. It is therefore important that the robot can navigate through the water to guide the fish towards the reef. For this, the robot should firstly be able to detect where fish should be guided to and then manoeuvre in the ocean without damaging any of the already existing reef. Establishing which parts of the reef need to be tackled can be done by scanning the reef by means of taking pictures and comparing them to a database full of images of coral reef. A camera that operates well underwater is therefore a must. This camera will also be used in combination with a filter to navigate the robot in the water.
Since fish can be tricked in believing the coral is still alive through sounds of different frequencies, the robot will have to be capable of creating these sounds underwater. To achieve this, an underwater sound system is needing to be implemented inside the robot. Research done by Enger, Karlsen, Knudsen, and Sand (1993) shows that there is a wide range in frequency of what fish can hear. In this research, tests were done on different fish which resulted in hearing thresholds differing between the species. To know what frequency to send out at what moment, the robot will have to know what kind of fish are around and adjust its emitting sound. A database of the types of fish is needed to compare the with the camera detected fish.