PRE2019 3 Group7
Group Members
Name | Study | Student ID |
---|---|---|
Daan Schalk | 0962457 | |
Job Willems | 1003011 | |
Jasper Dellaert | 1252454 | |
Sanne van Wijk | 1018078 | |
Wietske Blijjenberg | 1025111 |
Subject
Simulating populations using AI.
Objectives
een AI simulatie maken waarin je factoren kan aanpassen en dan kijken wat er met de populatie gebeurt? Analyseren hoe betrouwbaar zo'n tool is
- Construct an AI simulation with which we can evaluate the likelihood of adverse ecological effects on populations occurring as a result of exposure to physical or chemical stressors
- Analysing the reliability of such a simulation by comparing the results to scenarios which have happened in the past.
- Analysing the possibilities and shortcomings of such a simulation.
Users
Biologists, ecologists, government organisations making wildlife plans, education
State-of-the-art
- Multi-agent Based Simulation: Where Are the Agents? https://link.springer.com/chapter/10.1007/3-540-36483-8_1
- VORTEX: a computer simulation model for population viability analysis
https://www.publish.csiro.au/WR/WR9930045
- A Generalized Computer Simulation Model for Fish Population Studies
https://afspubs.onlinelibrary.wiley.com/doi/abs/10.1577/1548-8659(1969)98[505:AGCSMF]2.0.CO;2
- Artificial Intelligence techniques: An introduction to their use for modelling environmental systems
https://www.sciencedirect.com/science/article/abs/pii/S0378475408000505
- An artificial intelligence modelling approach to simulating animal habitat interactions
- Application of Multi-agent Simulation in Animal Epidemic Emergency Management: Take an Example of AFS (Africa Fever Swine) Policy
http://www.dpi-proceedings.com/index.php/dtetr/article/view/31843
- A Study of AI Population Dynamics with Million-agent Reinforcement Learning (2018)
https://dl.acm.org/doi/10.5555/3237383.3238096
- Simulating exposure-related behaviors using agent-based models embedded with needs-based artificial intelligence (2018)
https://www.nature.com/articles/s41370-018-0052-y/
Approach
1 Create a simulated environment where AI based on neural networks can roam.
2 Edit factors such as amount of food and maximum speed of the AI to see how this influences the AI.
3 Analyze the results of step 2, iterate and try to find interesting stuff.
4 Document everything interesting
Planning
Milestones
Understanding of state of the art
A list of features we might want to implement into our simulation
A minimal viable product: a simulation that can house AI based on neural networks
The simulation but with some of the features of the list above implemented
Having research results by watching the simulations
Having research results by changing some factors of the simulation (such as amount of food)
Documenting our results and comparing them to real life to create a conclusion
Deliverables
- A simulated environment where AI based on neural networks can roam.
- This wiki page, which contains our process, research and the results of our analysis.
- A presentation