PRE2019 3 Group8
Group Members
Name | Study | Student ID |
---|---|---|
Teis Arets | Psychology & Technology | 1261991 |
Tom Bergmans | Psychology & Technology and Electrical Engineering | 1253565 |
Nynke Boonstra | Psychology & Technology | 1251155 |
Bob Hofstede | Psychology & Technology | 0950282 |
Emile Merle | Computer Science | 1244746 |
Abstract
In this article one can read about our literature study towards a study buddy. The results are used to come up with recommendations for designing a study buddy. The study buddy can be used by children who have difficulties with keeping pace of fellow scholars.
Planning
Each group has plan ready after Week 1, Plan contains:
- subject,
- objectives,
- users,
- state-of-the-art,
- approach,
- planning,
- milestones,
- deliverables,
- who will do what
Milestones
- Decide upon a subject
- Write the introduction and the problem statement
- Describe the users and their needs
- Describe the approach
- Search and read papers about the current state of the art
- Make a summary of the papers about the current state of the art
- Prepare a presentation about the robot
- Give the presentation about the robot
- Complete the Wiki page
Deliverables
- A complete and coherent Wiki page concerning the study of how to design a study buddy
- A presentation about the study of how to design a study buddy
Approach
In order to find out how the perfect study buddy should be designed, we will perform a literature study about the needs of feeble-minded children in elementary school. We will use this information to create several persona’s that represent the primary users. Based on these persona’s and additional literature, we come up with several suggestions for developing a study buddy. Furthermore, we will conduct a literature study to find out which technological advances are required to let the study robot function as desired, and to find out if technology is sophisticated enough yet to realize this project.
Introduction
Subject
A study buddy that helps scholars to concentrate and motivate during their study sessions.
Problem statement
Since the introduction of the Dutch “Wet Passend Onderwijs” in 2014, elementary school children with physical or mental disabilities are stimulated to follow regular education as much as possible (“Scholen voor speciaal onderwijs bezwijken onder wachtlijsten,” 2019). However, according to Wim Ludeke of the Landelijk Expertisecentrum Speciaal Onderwijs (LESCO), the number of children applying for a custom form of education is increasing. The reason is that, as a result of the current lack of elementary school teachers (Traag, 2018), teachers of “regular schools” do not have the time and resources to support these children, and thus they are sent back to schools with extra support. This introduces the problem that children with a need for special education in schools that provide regular education cannot receive an optimal tuition. The focus in this paper will be on feeble-minded children: children with an IQ-score between 70 and 85 (Bexkens, Petry, Graas, & Huizinga, 2018). These children often experience difficulties with learning. For example, they often fail to understand a novel concept the first time it is explained in class, because of which they might need an extra, more elaborate explanation of the concept (Ahmad, Mubin, & Orlando, 2016). In circumstances like this, the teacher often lacks the time to provide this kind of extra tuition, but a robot can repeat it as many times as necessary.
Objectives
The aim of our literature study is to define a robot that can act as a study buddy to help feeble-minded children in elementary school keep up with the pace of fellow students. The aim of our study is to describe how the robot could perform as buddy in the best way.
Users
Scholars and/or students. Mostly scholars with problems concerning concentration, like autistic children. Or scholars that are too smart and don’t feel motivated anymore to study.
Primary Users
The primary user in this report will be defined as the person that actually works and interacts with the study buddy robot. Therefore, the primary user will certainly be the somewhat less cognitively capable elementary school students that need some extra guidance during class. After the teacher is done explaining some new content, the student will be able to let the teacher know which concepts were not clear after the teacher explained them. The teacher can then activate which topics the study robot must explain again. The student will therefore use the robot the most.
Furthermore, the teacher is considered to be a primary user, because they need to activate the robot and select which topics should be taught again by the robot. So, the teacher also works with the study buddy first-hand in terms of setting up the robot’s study plan. Moreover, the teacher will keep track of the students’ progress after working with the study robot.
Secondary Users
Secondary users of the teaching robot are classified as people who may be indirectly influenced by the system in some way. In this case, where we assume a class in regular education with a relatively small amount of feeble-minded students that require a study buddy robot, the secondary user would be the classmates that are not assigned a study robot. An influence of a peer’s study robot on classmates might be a disruption of classmates’ concentration due to sound expressed by the robot during one of its explanations, or simply due to distracting images on the robot’s interface.
Requirements
The study buddy shall:
- have an touchscreen as an interface to communicate the content of the class with the student.
- be able to signal emotion through colored leds that function as the robot’s ‘eyes’.
- understand the emotional state of the student and communicate accordingly.
- be able to keep track of the progress of the user.
State-of-the-Art
In this section, research is done to investigate what is already known about (robotic) study buddies. Twenty-five articles are found, each article is shortly described to end up with an overview about different studies on study buddies.
1. Ahmad, M. I., Mubin, O., Shahid, S., & Orlando, J. (2017). Emotion and memory model for a robotic tutor in a learning environment.
- A robot tried to teach children vocabulary, while the children were playing snake. The robot was either giving positive, negative or neutral feedback. The result of the positive feedback had a significant effect compared to the other two in addition the robots helped to learn the children learn vocabulary.
2. Ahmad, M. I., Mubin, O., & Orlando, J. (2016). Understanding behaviours and roles for social and adaptive robots in education: Teacher’s perspective.
- The purpose of this study is to not only understand teacher's opinion on the existing effective social behaviours and roles but also to understand novel behaviours that can positively influence children performance in a language learning setting.
3. Andrews, J. and Clark, R. (2011). Peer mentoring works! Birmingham: Aston University.
- This report draws on the findings of a three year study into peer mentoring conducted at 6 Higher Education Institutions (HEIs). The research findings provide empirical evidence that peer mentoring works.
4. Arnold, L., Lee, K.J., & Yip, J.C. (2016) Co-designing with children: An approach to social robot design.
- The study let children co-design during their process of making a Friend Robot. It turns out that including children in the design process is a way to gain unique insights. Several of the children said that they would want their friend robot to be small and portable.
5. Edwards, A; Edwards, C; Spence, P; Harris, C; Gambino, A (2016), Robots in the classroom: Differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher”.
- College students rated the credibility of a teleoperated robot and an autonomous social robot acting as a teacher for the same lecture. Results showed that while the teleoperated robot was considered more credible, the overall teaching was of the same level and students are willing to follow lectures of autonomous robots.
6. E.Hyun ; H.Yoon ; S. Son (2010) Relationships between user experiences and children's perceptions of the education robot.
- To help with better studying, the robot should be placed/interacted with in a classroom rather than a hallway or office. The results were better when there was a two-way interaction, which means using the touchscreen and listening to the robot's voice.
7. Fachantidis, N., Dimitriou, A. G., Pliasa, S., Dagdilelis, V., Pnevmatikos, D., Perlantidis, P., & Papadimitriou, A. (2017). Android OS mobile technologies meets robotics for expandable, exchangeable, reconfigurable, educational, STEM-enhancing, socializing robot.
- A socially assistive robot is being constructed to represent a companion of the student, motivating and rewarding him. The paper addresses existing prior-art and how an android OS smartphone will address the design requirements.
8. Feil-Seifer, D., & Matarić, M. J. (2011). Socially assistive robotics. IEEE Robotics & Automation Magazine, 18(1), 24-31.
- The paper aims to probe the need of an assistive robot that makes reading process less challenging.
abstract.
9. Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & education, 70, 53-64.
- The experiment in this paper was designed to examine how KindSAR(Kindergarten social staff) can be used to engage preschool children in constructive learning, the basic principe of constructivist eductaion is that learning occurs when the learner is actively involved in a process of knowledge construction.
10. Janssen, J.B., van der Wal, C.C., Neerincx, M. (2016). Motivate to learn: Effects of performance adaptation on child motivation of robot interaction
- Long-term interaction between children and robots requires the child to have a bond with the robot. Specifically for children with diabetes, robot interaction could be a valuable addition as support for their daily struggles. Results from the free-choice period showed that motivation of children that interacted with the adaptive robot was significantly higher compared to the non-adaptive robot.
11. Kim, Y., Smith, D., Kim, N., & Chen, T. (2014). Playing with a Robot to Learn English Vocabulary
- Through multiple observations of child-robot play in situ, it was noted that children easily learned how to interact with the robot and showed sustained interest and engagement in the curricular activities with the robot
12. Lee E.K., & Lee Y.J. (2008). Elementary and Middle School Teachers’, Students’ and Parents’ Perception of Robot-Aided Education in Korea.
- In Korea, robot-aided education has been studied. It was shown that robot-aided education was friendlier than other media-assisted education and enhanced children’s motivation. The perceptions and needs of intelligent educational service robot among teachers, students and parents in Korea were surveyed. In this study, it was found that they have a positive perception of the use of robots in schools. However, they do not want to use the robot as a teacher.
13. Leite, I., Pereira, A., Castellano, G., Mascarenhas, S., Martinho, C., & Paiva, A. (2011, June). Social robots in learning environments: a case study of an empathic chess companion.
- For the system used in this paper a multimodal system for predicting and modeling some of the children’s affective states is currently being trained using a corpus. With this model a personalised learning experience by adapting the robot’s empathy to the needs of the child is modeled.
14. Leyzberg, D; Spaulding, S ; Scassellati, B (2014), Personalizing Robot Tutors to Individuals’ Learning Differences, in 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
- A robot tutor gives either general or personalized advice. The study shows that there is a one-sigma increase in results with personalized advice, signifying that the personalized advice of the robot can give results no matter how small.
15. Leyzberg, D; Spaulding, S ; Scassellati, B; Toneva, M (2012); The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains, Department of Computer Science, Yale University
- 100 students were tasked to solve a series of puzzles, with robot tutors giving varying degrees and methods of advice. Results showed that the group of students with the physical presence of the robot giving personalized advice were the better group.
16. Meghdari, A., Shariati, A., Alemi, M., Vossoughi, G. R., Eydi, A., Ahmadi, E., Tahami, R. (2018). Arash: A social robot buddy to support children with cancer in a hospital environment.
- The social robot Arash is for educational and therapeutic involvement in a pediatric hospital to entertain, assist and educate cancer patients. Two experiments were done to evaluate the acceptance and involvement of the robot, the obtained results confirm high engagement and interest of pediatric cancer patients with the constructed robot.
17. Robins, B.; Dautenhahn, K; Te Boekhorst, R. & Billard, A. (2005); Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? In Universal Access in the Information Society
- This study let children with autism interact with both robots and humans. Results showed that, after first interacting with robots, their social skills were better when interacting with humans.
18. Shahid, S., Krahmer, E., & Swerts, M. (2014). Child–robot interaction across cultures: How does playing a game with a social robot compare to playing a game alone or with a friend?
- This study let children interact with social robots. The children played games with iCat, it turns out that the children prefer playing with iCat above playing alone. However, the children do even more prefer playing with friends.
19. Serholt, S; Basedow, C; Barendregt, W; Obaid, M (2014), Comparing a humanoid tutor to a human tutor delivering an instructional task to children
- The study compares two groups of children creating a LEGO construction, one with a human instructor and one with a robot instructor. The results show equal performance, but different attitudes: children ask more questions to the human tutor, but are more eager to do well with the robot tutor.
20. Stephens, H., & Jairrels, V. (2003). Weekend Study Buddies: Using Portable Learning Centers.
- The use of the study buddy may encourage parents to be more involved and if the children enjoy the study buddy at school it may extend that enjoyment at home.The student buddy may serve as an additional tool for individualizing instruction and enhancing the achievement for all students.
21. Sinoo, C., van der Pal, S., Blanson Henkemans, O.A, Keizer, A., Bierman, B.P.B., Looije, R. & Neerincx, M.A. (2018). Friendship with a robot: Children’s perception of similarity between a robot’s physical and virtual embodiment that supports diabetes self-management.
- The PAL project develops a conversational agent with a physical (robot) and virtual (avatar) embodiment to support diabetes self-management of children ubiquitously. Their conclusions are that children felt stronger friendship towards the physical robot than towards the avatar. The more children perceived the robot and its avatar as the same agency, the stronger their friendship with the avatar was. The stronger their friendship with the avatar, the more they were motivated to play with the app and the higher the app scored on usability.
22. Thalluri, J., O'Flaherty, J.A., & Shepherd, P.L., (2014). Classmate peer-coaching: "A Study Buddy Support scheme".
- The study investigated the effects of a human study buddy. The students with a study buddy scored higher on a test compared to the ones without.
23. Verner, I; Polishuk, A; Krayner, N (2016), Science Class with RoboThespian: Using a Robot Teacher to Make Science Fun and Engage Students, in IEEE Robotics & Automation Magazine (Volume: 23, Issue: 2, June 2016)
- the humanoid robot RoboThespian gives a science lecture to children from grades 5-7 in two different environments, to check the perception of the robot by the children. The results are positive, and the educational goals attained.
24. Werry, I. Dautenhahn, K. (1999) Applying Mobile Robot Technology to the Rehabilitation of Autistic children.
- The paper discusses the background and major motivations which are driving the AuRoRA--(Autonomous Robotic platform as a Remedial tool for children with Autism) research project.In conclusion, robots can make a valid contribution in the process of rehabilitation and have the potential to make a contribution in the area of autism.
25. Werry, I., Dautenhahn, K., Harwin, W. (2001) Investigating a Robot as a Therapy Partner for Children with Autism.
- The AuRoRA project is investigating the possibility of using a robotic platform as a therapy aid for children with autism. The results thus far are encouraging in that they indicate that the children not only enjoy interacting and playing with the robot at various levels, but that they focus attention on the robot for longer than the toy truck. The children seem able to form very simple bonds with the robot and even to understand the basic interactions involved.
Logbook
Date | Name | Activity | Time spent (HH:MM) |
---|---|---|---|
06/02/20 | Bob | Searching articles, writing SotA | 04:30 |
06/02/20 | Teis | Writing problem statement, introduction, and who are the users | 03:30 |
06/02/20 | Tom | Searching articles, writing SotA | 03:30 |
06/02/20 | Emile | Searching articles, writing SotA | 03:00 |
06/02/20 | Nynke | Searching articles for and writing problem statement, introduction, milestones, deliverables | 04:20 |