PRE2017 3 Group 17

From Control Systems Technology Group
Revision as of 13:45, 28 February 2018 by S169014 (talk | contribs) (fixing typos)
Jump to navigation Jump to search
Members of group 17
Eric Arts1004076
Menno Hofsté0996144
René Nijhuis0912331
Erik Takke1000575
David Tuin1013331

Construction drones

Project Details

Problem Statement / Subject explanation

In building projects it happens quite often that objects are too large to be carried by man and have to be brought to their desired spot by crane. However, often the construction has advanced to the point that cranes can no longer reach said spot, creating a problem. This problem is usually solved by using all different types of transportation to get the object to its spot. These different types of transport, and especially transitioning from one to another, takes a lot of time. To reduce this, it would be desirable to have a single means of transport that can carry the object to its final resting place fast in one, smooth go.

One means that comes to mind are drones. Despite currently not being able to carry much weight, technology is catching up and has started to develop stronger drones. All that is left is to manoeuvre the drone, lifting the object, through the building. Even though it would be possible to have the drone be steered by a human, it would be faster, safer and cheaper to have the drones to it by themselves. Therefore we want to develop a piece of software that can guide the drone(s) through the building and have them deliver the object themselves. It is the aim to have the drones evade obstacles (walls and scaffolding), navigate between floors (flying through elevator shafts or stairwell) and detect humans and stop or evade them, depending on what is safer. All to have the drone reach its destination.

To reach this goal, a proper problem statement has been constructed: How to move large objects through buildings that are under construction, using drones.

This subject uses ideas and resources from the robotics field (drones) and also accommodates all USE parts: The solution would be interesting for enterprises. Additionally, the drones can lead to hazardous situations for users and bystanders (society), adding an ethical touch to it.

Objectives

As can be read in [[<tvar|external>#Problem Statement / Subject explanation</>| Problem statement]], it is our goal to create software that can guide object carrying drones through a multi-floor construction site. To reach this goal, several objectives can be set to clearly see the progress that is made over the weeks.

Find path

The system will be equipped with a rough layout of what the construction zone looks like. Based on this rough layout, the system has to be able to find a path that will bring the drone from its starting point to its destination. As the path does not just have to be a 2D but rather a 3D route, this will be quite the challenge to create.

Evade objects and agents

However, just like in every construction zone, obstacles (such as scaffolding) will be moved constantly, making for a dynamic environment. Therefore it will be necessary for the algorithm to adjust its path on the fly, evade objects/obstacles and still find a path to its destination. Additionally, if the idea were to catch on, it would be possible form multiple drones to simultaneously bring objects to different destinations. To prevent the drones from flying into each other, they will have to be able to detect and evade each other. The same can be said for humans: construction workers could potentially be walking all over the place. To prevent them from getting hit and be injured, the drones will have to be able to detect them and stop/evade them.

Assumptions

  • The drones move in unison.

Users and what do they require?

  • Construction companies
    • The drones will have to be able to have sufficient lifting power.
    • The drones will have to operate by themselves
    • The drones will have to be able to detect and avoid all living agents.
    • The system has to adhere to safety regulations.

Requirements

  • Equipment failure can be dealt with
  • Object detection in continuous environment.

Approach & Milestones

  1. Have concrete idea.
  2. Have a basic model (single floor, all obstacles at same height).
  3. Have a advanced model (multiple floors, all obstacles at same height).
  4. Take obstacle height into account.
  5. Detect and avoid other agents (other drones / humans).

Deliverables

The goal is to create software to have the drones fly by themselves. In the end we will deliver two things. First of all, an algorithm that finds a path through the building that is under construction and can adjust its path in dynamic situations. It is our goal to create this software as realistically as possible, preferable to the point that it could be used in a real life situation. Second, to show what we have accomplished, certain example situtations will be created. For these situations, the algorithm output will be explained. This should give a clear view of what the developed software is capable of.

Who does what?

T.B.D: It is as of yet unclear who will do what. As we are all software science students, we are all capable of the same things and can therefore be used for all tasks. Furthermore, we do not find it is usefull to make a planning, in case the plan is not accepted. It is however quite likely we will all participate in programming / desiging the model and algorithm, our deliverables. Additionally, all will participate in some literary research into the USE related ethical questions surrounding this project.

State of the Art

To keep this wiki clutter free, the page PRE2017 3 Group 17 - State of the Art has been created, containing several articles that support the attainability of this project.

References


Coaching Questions Group 17