Integration Project Systems and Control 2013 Group 3
Jump to navigation
Jump to search
Group Members
Name: | Student id: | Email: |
Joep Alleleijn | 0760626 | j.h.h.m.alleleijn@student.tue.nl |
E. Romero Sahagun | 0827538 | e.romero.sahagun@student.tue.nl |
M. Kabacinski | 0789360 | m.j.kabacinski@student.tue.nl |
N. Kontaras | 0827208 | n.kontaras@student.tue.nl |
A. Simon | 0676675 | a.s.simon@student.tue.nl |
Planning
Week: | Activities: | |
---|---|---|
Feb 18 - Feb 24 | ||
- Prepare and conduct tests for coupling/decoupling(JA,NK,MK) 3.5 hours | ||
- Prepare and conduct tests for non linearity (JA,NK,MK) 3.5 hours | ||
- Prepare and conduct tests for joint identification and create FRF models of the joints (JA,NK,MK) 5 hours | ||
- Set up DH transfer matrices (AS) 5 hours | ||
- Generate Matlab Simulation of the kinematic chain (ER) 7 Hours | ||
Feb 25 - Mar 3 | ||
- Design PID feedback controller, add feedforward and test on the robot for each joint (JA,NK,MK) 11 hours | ||
- Prepare testing procedure (JA,NK,MK) 1.5 hours | ||
- Implement inverse kinematics (IK) code in matlab (AS) 2 hours | ||
- Matlab code for trajectory generation (TG) (ER) 5 hours | ||
Mar 4 - Mar 11 | ||
- Test controllers on the robot (JA,NK,MK) 2 hours | ||
- Test trajectory generation on the simulation (ER) 3 hours | ||
- Integrate Inverse Kinematics with Controllers (AS,ER) 2 hours | ||
Mar 12 - Mar 19 | ||
- Consider different controller design methods (JA,NK,MK,AS,ER) 10 hours | ||
- Work on report (JA,NK,MK,AS,ER) 2 hours | ||
Mar 20 - Mar 27 | ||
- Test routine generation on the robot (JA,NK,MK,AS,ER) 2 hours | ||
- Select optimal routine (JA,NK,MK,AS,ER) 4 hours | ||
- Problem solving (JA,NK,MK,AS,ER) 10 hours | ||
- Consider different controller design methods (JA,NK,MK,AS,ER) 10 hours | ||
- Test different controllers (JA,NK,MK,AS,ER) 5 hours | ||
- Work on report (JA,NK,MK,AS,ER) 2 hours | ||
Mar 28 - Apr 4 | ||
- Work on report (JA,NK,MK,AS,ER) 15 hours | ||
- Prepare presentation (JA,NK,MK,AS,ER) 5 hours |
Progress
Week 1: Feb 18 - Feb 24
1 Made a list for the requirements of the controller | |||
// do we have it already? can anyone upload it here? | |||
2 Prepare and conduct tests for coupling/decoupling (JA,NK,MK) | |||
Have not done yet, task is postponed to the next week. However so far we have not encountered problems with decoupling. It seems that the complete system can be approached as several SISO systems. This makes it possible to use decoupled (diagonal) controller. More detailed test are to be carried out next week. | |||
3 Prepare and conduct tests for non linearity (JA,NK,MK) | |||
Have not done yet, task is postponed to the next week. | |||
4 Prepare and conduct tests for joint identification and create FRF models of the joints (JA,NK,MK) | |||
Started with FRF measurements, takes longer then expected. Especially for the vertical movement it is challenge to conduct a measurement without hitting the airbag limits of the machine.
Most recent FRF models of the vertival fork displacement: | |||
5 Set up DH transfer matrices (AS) | |||
Inverse kinematics don't have to be determined, this has been already done, only trajectory and controllers have to be developed. | |||
6 Generate Matlab Simulation of the kinematic chain (ER) | |||
// do we have it already? |
Week 2
- ...