PRE2023 3 Group12

From Control Systems Technology Group
Jump to navigation Jump to search

Members

Name Student ID Email
Aseem Mahamood 1789767 a.mahamood.aseem@student.tue.nl
Sanshray Malhotra 1792318 s.malhotra1@student.tue.nl
Nout Van Bommel 1842110 n.g.h.v.bommel@student.tue.nl
Saqib Khan 1783432 s.a.s.khan@student.tue.nl
Mara Pop 1671820 m.pop@student.tue.nl
Adrien Verriele 1710303 a.a.m.verriele@student.tue.nl

Introduction

Problem Statement:

Many homeowners have aquatic pets of certain kinds either for aesthetic reasons or out of genuine compassion for the animals. The living conditions, temperature, and environment of the tank hosting the aquatic creatures must be optimal to ensure their wellbeing and the creatures are living optimally. In many cases, the owners of these pets want the well-being and happiness of their pets. However, in certain circumstances, it may be tough for them to provide optimal care due to them not having sufficient knowledge and/or time to care for them such as when they are on vacation. Certain fish species or "aquatic creatures" have strict parameters for an optimal life to ensure their well-being such as a certain water temperature, specific water PH levels or alkalinity level, or ammonia presence in the water. Our proposed solution is to create a device that monitors the temperature of a fish tank alongside PH level, alkalinity level, or ammonia presence with the usage of certain sensors and through an application informs the user if something is of issue and proposes solutions to solve this.

Like seen in numerous papers citations, there have been multiple people working on this or similar problem. Each of them coming with their own solution. In all of them there is room for improvement. The systems are mostly outdated due to the rapid development of the technological world. The systems could be made more extensive, autonomous and easier to use for the users.


//expand on this


Objectives:

The objectives of our device are that:

- It should be waterproof to ensure it can be submerged in water / survive splashes of water if it is placed outside the water

- It should continuously collect sensor data (PH, temperature and ammonia concentration)

- It should be able to connect to a database server where all data is sent as well as processed to check for any issues (imbalances in the environment)

- It should inform the user via an app if there is an issue detected (high or low PH level, unstable water temperature, unsuitable ammonia concentration)

- The user should be able to set the optimal environment parameters for the aquarium (with initial recommendations for new users)

- App should inform the user of potential solutions for the issue (imbalances in the environment)

- Once the user fixes the problem, the app should ensure the environment is optimal


Users:

  • Homeowners with Aquatic Pets: These users keep fish or any other aquatic creature simply for the sake of aesthetic enjoyment or as a hobby. They may have various levels of expertise when it comes to maintaining an aquarium's optimal condition, from beginners, who might lack detailed knowledge about the different needs of their aquatic pets, to enthusiasts with plenty of experience.
  • Veterinary Clinics: Professionals who provide medical care or rehabilitation for aquatic animals could use the system to monitor and ensure the health of their aquatic patients.
  • Educational institutions: Institutions such as schools and universities that use aquariums for educational purposes may benefit from the device to teach students about marine life care.
  • Research Facilities: Marine biologists or scientists can utilize the device for precise control and monitoring of the experimental conditions.
  • Maintenance Services: Experts who have to maintain aquariums for clients could use the device to provide excellent quality services while ensuring long-term health and stability to the aquariums.

What Do The Users Require:

  • Ability to remotely track and monitor environmental changes such as pH, water temperature and ammonia concentration in the fish tank through an application on their phone or websites.
  • Ability for them to set their own ideal parameters in the application (with suggestions of what these ideal parameters could be for certain scenarios).
  • Alerts and suggestions on what to do when parameters are far from ideal.
  • Autonomy and trustworthiness of the system


Planning:

The planning is provisional and will most likely change slightly to further complement with the project and the limited time.

week 2:

Specify exact scope of the project (use papers to select a project we will build upon or improve)

create plan, find feasible assignments for everyone to work on

Come up with idea/concept (everyone should think about new, out-of-the-box designs)

Functional specifications should be made based on the needs of our users, underpinned by arguments

week 3:

deadline for finishing full planning

a final design should be selected to work on

tasks should be divided for each to work on

research on parts and software

research on concepts and specifications

work on technical specifications

next coming weeks:

...

Papers Found With A Short Summary:

Automated Monitoring System for the Fish Farm Aquaculture Environment

(https://www.researchgate.net/profile/Debabrata-Bej/post/Can-someone-recommend-a-good-article-on-sensor-networks-applied-to-monitoring-a-fish-farm/attachment/5f6ed9ade66b860001a46443/AS%3A939896537612289%401601100205417/download/07379340.pdf)

The paper introduces a method for fish farmers to actively control their farm. They introduce a problem of waste, unnecessarily created by a lack of monitoring their fish. The waste can be reduced by actively tracking the fish and feeding when needed. They also state that, for optimal farming, the conditions in such a tank should be kept at certain rates. The team establishes a device to monitor the data acquired, using simple but accurate sensors. They describe a way to measure the most important values and how they created a system available for the user. They create a software program that runs on android devices to give the farmers access to the results, and create a space where the farmers can change certain values based on the fish their needs. The paper doesn’t specifically state for which levels the system is made, and what would be optimal for certain species. The energy management of the system is very efficient, and because of the WIFI implementation they created an accessible system.


Design and implementation of a smart monitoring system for water quality of fish farms

(https://www.researchgate.net/profile/Nahla-Alchalaby/publication/333356582_Design_and_implementation_of_a_smart_monitoring_system_for_water_quality_of_fish_farms/links/5cf175dca6fdcc8475fb7cc3/Design-and-implementation-of-a-smart-monitoring-system-for-water-quality-of-fish-farms.pdf)

The paper focusses on the creation of a monitoring system for fish farms. The authors try to give real time information to the farmer via a mobile app. They see the rapid change in the health and agriculture sector towards a fully monitored and perfected system. The authors use an Arduino UNO and a pH and temperature sensor to monitor the values in the tanks. The user can use his phone with a Bluetooth connection to connect and get the real time information on their mobile device. There are some major improvements that could be made compared to this project. The information is quite limited and could be extended on. Also we could try to implement a more autonomous system that does certain tasks like changing pH or giving food. The system could also be upgraded to be more up to date and accessible.


Aquarium Monitoring and Automatic Feeding System Based on Internet of Things

https://ojs.unikom.ac.id/index.php/injuratech/article/download/10012/3770/

This article focuses on creating aquarium monitoring and automatic feeding systems for ornamental fish tanks and fish farms to support this high demand industry in Indonesia. The project focuses on 3 sensors and 1 actuator, namely the temperature sensor, pH sensor and turbidity sensor and a servo motor for the automatic feeding system. The idea is to have this system work togeather with a smart phone application that has 3 panels. A home screen that displays weather information for outdoor systems as well as displaying the feeding schedule and options to adjust it. The second panel focuses on monitoring the environmental data such as displaying temperature, pH and turbidity data. The final panel focuses on sharing the data and/or generating reports to be exported.

Smart Aquarium Management System

https://www.researchgate.net/publication/345690191_Smart_Aquarium_Management_System

The paper discusses the development of a Smart Aquarium Management System designed to automate and remotely monitor aquarium conditions, including temperature, pH levels, feeding schedules, and aeration through an IoT-based solution. The system aims to reduce manual maintenance efforts by allowing users to control and monitor their aquariums via mobile application, ensuring optimal living conditions for fish. It also aims to replicate natural conditions as closely as possible, ensuring the health and well-being of fish and other aquatic organisms. This innovation addresses challenges faced by aquarists, such as feeding fish during absences and maintaining water quality, by providing real-time data and controls through a user-friendly interface.


Implementation of Smart Aquarium System Supporting Remote Monitoring and Controlling of Functions using Internet of Things

https://www.researchgate.net/publication/337567490_Implementation_of_Smart_Aquarium_System_Supporting_Remote_Monitoring_and_Controlling_of_Functions_using_Internet_of_Things

The article presents the implementation of a smart aquarium system that uses Internet of Things (IoT) technology for remote monitoring and control of aquarium functions. It introduces a fully automated system capable of operating without human intervention, focusing on features like mechanical fish feeding over the internet and monitoring parameters such as feed level, water temperature, pH, and water level remotely. The authors use various tools such as Arduino Mega 2560, ultrasonic sensor, ESP8266, LCD 20x4, PH sensor, temperature sensor, water pump motor, servo motor, four-channel relay module, water heater, and fan. These components work together to automate and remotely manage aquarium conditions, enhancing efficiency and facilitating non-intrusive care for aquatic life​.


A Review of Smart Fish Farming Systems

https://www.researchgate.net/profile/Faizan-Mustafa-4/publication/305818856_A_Review_of_Smart_Fish_Farming_Systems/links/5def2c0d299bf10bc34ec44a/A-Review-of-Smart-Fish-Farming-Systems.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail

The paper provides an in-depth look at the application of AI in aquaculture engineering, focusing on the use of Artificial Neural Networks (ANN) to enhance water quality management for fish farming. It highlights the potential of AI to automate the monitoring and adjustment of critical parameters such as salinity, oxygen levels, pH, and temperature, ensuring optimal conditions for aquaculture. This integration aims to increase efficiency, reduce costs, and promote sustainable practices within the fish farming industry, demonstrating a significant advancement in aquaculture technology.


Intelligent Fish Tank Based on WiFi Module

https://front-sci.com/journal/article?doi=10.32629/jai.v1i1.16

The paper presents an innovative intelligent fish tank system that leverages a WiFi module for remote monitoring and control via an Android smartphone. Utilizing the STC89C52 microcontroller as its core, the system employs sensors to track water temperature and level, adjusting the latter as needed and allowing users to interact with the tank in real-time from anywhere. This approach showcases the practical application of IoT technologies in enhancing the care and management of aquatic environments, demonstrating significant advancements in home automation and smart device integration.


An Intelligent Behavior-Based Fish Feeding System

https://ieeexplore.ieee.org/abstract/document/7473754/?casa_token=di9yPTP-HA4AAAAA:AlsYqSYDXJyVp_m9uH40Kq-Nk0SMd4lePdkq0nqAAbOWJc3xZ9b2cmPpWf0cJBOeqENJHWc3sQ

The paper discusses an adaptive smart fish feeder system that adjusts feeding times and amounts based on observed fish behavior, aiming to solve problems associated with traditional feeding methods in aquaculture. This innovative system is expected to enhance fish welfare by reducing food competition and waste, thereby improving water quality. The study highlights the potential for increased farm productivity and efficiency through customized feeding strategies informed by fish responses, suggesting significant advancements in aquaculture practices.


Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming

https://www.mdpi.com/2073-431X/10/3/26

The paper discusses the use of machine learning method such as K-Nearest Neighbors, Random Forests, Decision Trees, Regression and Principal Component Analysis to categorize the quality of water for fishes. It proposes water temperature, pH, nitrites and nitrates, phosphorous, calcium, magnesium and dissolved oxygen as input parameters for these methods. The paper then proposes a system consisting of two water pumps controlled by a pump controller, a nitrate sensor and an impedance analyser as well as other sensors for all the parameters, all of this controlled by an arduino UNO. The system uses a LoRA shield for communication and is powered with a 12W solar panel and a battery. The collected data is sent on a cloud server to be analyzed on a user application. The estimated cost of the prototype is USD 250.


Water Quality Monitoring System for Fisheries using Internet of Things (IoT)

https://iopscience.iop.org/article/10.1088/1757-899X/1176/1/012016

The paper discusses the use of the Internet of Things to monitor fish and water in a fish production pond. It proposes a system with temperature and pH sensors, as well as a ultrasonic sensor for fishes controlled by an NodeMCU microcontroller and a ESP8266, which sends the data via wi-fi to a Blynk database that also sends notifications by e-mail. The conclusion of the experiment conducted with this system is that such an IoT device is able to efficiently track the quality of water for fishes, though some adjustments could be made to improve it, such as having a better user interface to track the data, adding more parameters in defining the quality of water, and using LoRaWAN for communication.


Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process

https://www.mdpi.com/1424-8220/18/3/750

The paper discusses the use of low-cost sensor for monitoring fishes and water in fish farms. The proposed system monitors water quality parameters, tank status, feed falling and fish swimming behavior. It uses a thermistor type negative temperature coefficient (NTC) temperature sensors, an inductive sensor for measuring conductivity an optical turbidity sensor and IR photodiode oil sensor. These are controlled by an Arduino MEGA with an ESP8266 wi-fi module. The system also uses smart protocols to send only the relevant information over the network to reduce energy waste. The estimated total cost for sensors is less than €90.


Development of Domestic Animals Shelter Environment Monitoring System using Internet of Things (IoT)

https://ieeexplore.ieee.org/document/10169332

This paper addresses the problems that occur in domestic animal shelters. They propose a solution using a system to control and measure certain parameters in those shelters. Using sensors and a microcontroller, the Arduino, they monitor the temperature, humidity, motion and gas levels. This is send to a blynk application where a farmer can view real-time values and get alerts when certain events occur, like high gas levels. The system also regulates the water and temperature in a shelter, by continually checking values and responding. The author states there can be a lot of improvement, like implementing more and better sensors.


IoT-Based Fish Farm Water Quality Monitoring System

https://www.mdpi.com/1424-8220/22/17/6700


Water Monitoring IoT System for Farming Ponds

https://stumejournals.com/journals/i4/2018/2/77.full.pdf


IoT based smart water monitoring system for Fish Farming Ponds

https://www.ijser.org/researchpaper/IOT-based-smart-water-monitoring-system-for-Fish-Farming-Ponds.pdf

Logbook

Week Student Work Done Total Time
1 Saqib Intro Lecture (2 hrs), Setup Wiki (0.5 hrs), Worked On Introduction (2 hrs)
1 Mara Worked on "Users" (0.5 hrs), Researched papers and provided summaries (3h)
1 Aseem worked on / edited introduction (1 hrs), read papers and added summary (1 hrs)
1 Adrien Intro Lecture (2 hrs), Researched papers and provided summaries (3hrs)
1 Nout Intro Lecture (2hrs), worked on introduction and planning (2h), read papers and make summaries(3hrs)