PRE2020 3 Group 5 Summaries
Jump to navigation
Jump to search
Main page: Main page
Week 1 Summeries
Bram: [11] [12] [13] [14] [15]
Stijn: [16] [17] [18] [19] [20]
Pepijn: [21] [22] [23] [24] [25]
References
- ↑ [1] Kardasz, P., & Doskocz, J. (2016). Drones and Possibilities of Their Using. Journal of Civil & Environmental Engineering, 6(3), 1–7.
- ↑ [2] Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, 91, 99–131.
- ↑ [3] Rao, B., Gopi, A. G., & Maione, R. (2016). The societal impact of commercial drones. Technology in Society, 45, 83–90.
- ↑ [4] Zhang, J., Hu, J., Lian, J., Fan, Z., Ouyang, X., & Ye, W. (2016). Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60–69.
- ↑ [5] Balasingam, M. (2017). Drones in medicine-The rise of the machines. International Journal of Clinical Practice, 71(9), e12989.
- ↑ [6] Capucci, A., Aschieri, D., Piepoli, M. F., Bardy, G. H., Iconomu, E., & Arvedi, M. (2002). Tripling Survival From Sudden Cardiac Arrest Via Early Defibrillation Without Traditional Education in Cardiopulmonary Resuscitation. Circulation, 106(9), 1065–1070.
- ↑ [7] Hoz, S. S., Aljuboori, Z. S., Dolachee, A. A., Al-Sharshahi, Z. F., Alrawi, M. A., & Al-Smaysim, A. M. (2020). Fatal Penetrating Head Injuries Caused by Projectile Tear Gas Canisters. World Neurosurgery, 138, e119–e123.
- ↑ [8] Kuprin, D. S. (2017). Physical–chemical explanation of fire-fighting efficiency of FHF (fast-hardening foam) based on structured silica particles. Journal of Sol-Gel Science and Technology, 81(1), 36–41.
- ↑ [9] Schlag, C. (2013). The New Privacy Battle: How the Expanding Use of Drones Continues to Erode Our Concept of Privacy and Privacy Rights. Pittsburgh Journal of Technology Law and Policy, 13(2), 1–23.
- ↑ [10] Hashemi, S. R., Esmaeeli, R., Aliniagerdroudbari, H., Alhadri, M., Alshammari, H., Mahajan, A., & Farhad, S. (2019). New Intelligent Battery Management System for Drones. Volume 6: Energy, 1–7.
- ↑ [11] Aydin, B. (2019). Public acceptance of drones: Knowledge, attitudes, and practice. Technology in Society, 59, 101180.
- ↑ [12] Sherstjuk, V., Zharikova, M., & Sokol, I. (2018). Forest Fire-Fighting Monitoring System Based on UAV Team and Remote Sensing. 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), 663–668.
- ↑ [13] Merkert, R., & Bushell, J. (2020). Managing the drone revolution: A systematic literature review into the current use of airborne drones and future strategic directions for their effective control. Journal of Air Transport Management, 89, 101929.
- ↑ [14] Rosser, J. C., Vignesh, V., Terwilliger, B. A., & Parker, B. C. (2018). Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS : Journal of the Society of Laparoendoscopic Surgeons, 22(3), e2018.00018.
- ↑ [15] EUCHI, J. (2020). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chinese Journal of Aeronautics, 1–9.
- ↑ [16] Floreano, D., & Wood, R. J. (2015). Science, technology and the future of small autonomous drones. Nature, 521(7553), 460–466.
- ↑ [17] Khan, M. N. H., & Neustaedter, C. (2019). An Exploratory Study of the Use of Drones for Assisting Firefighters During Emergency Situations. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–14.
- ↑ [18] Restas, A. (2015). Drone Applications for Supporting Disaster Management. World Journal of Engineering and Technology, 03(03), 316–321.
- ↑ [19] Liu, Z., Kim, A. K., & Carpenter, D. (2007). A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Safety Journal, 42(1), 25–42.
- ↑ [20] Aydin, B., Selvi, E., Tao, J., & Starek, M. J. (2019). Use of Fire-Extinguishing Balls for a Conceptual System of Drone-Assisted Wildfire Fighting. Drones, 3(1), 17–32.
- ↑ [21] Moore, J. (2013). U.S. Patent No. 2013/0134254. Maryland
- ↑ [22] W, G.Y. & K, K.W. (2019). U.S. Patent No. 10,413,763. Korea
- ↑ [23] Anania, E. C., Rice, S., Pierce, M., Winter, S. R., Capps, J., Walters, N. W., & Milner, M. N. (2019). Public support for police drone missions depends on political affiliation and neighborhood demographics. Technology in Society, 57, 95–103.
- ↑ [24] Feeney, Matthew, Surveillance Takes Wing: Privacy in the Age of Police Drones (December 13, 2016). Cato Institute Policy Analysis No. 807, Available at SSRN: https://ssrn.com/abstract=2919439
- ↑ [25] Manjikian, M. & Army War College (U.S.). (2017). A Typology of Arguments about Drone Ethics. Amsterdam, Netherlands: Amsterdam University Press.