PRE2018 4 Group8
Project Plan
Members
Name | Student ID | Study | |
---|---|---|---|
Rik Hoekstra | 1262076 | r.hoekstra@student.tue.nl | Applied Mathematics |
Wietske Blijjenberg | 1025111 | Software Science | |
Kilian Cozijnsen | 1004704 | k.d.t.cozijnsen@student.tue.nl | Biomedical Engineering |
Arthur Nijdam | 1000327 | c.e.nijdam@student.tue.nl | Biomedical Engineering |
Selina Janssen | 1233328 | s.a.j.janssen@student.tue.nl | Biomedical Engineering |
Ideas
Surgery robots
The DaVinci surgery system has become a serious competitor to conventional laparoscopic surgery techniques. This is because the machine has more degrees of freedom, thus allowing the surgeon to carry out movements that they were not able to carry out with other techniques. The DaVinci system is controlled by the surgeon itself, and the surgeon therefore has full control and responsibility over the result. However, as robots are becoming more developed, they might become more autonomous as well. But mistakes can still occur, albeit perhaps less frequently than with regular surgeons. In such cases, who is responsible? The robot manufacturer, or the surgeon? In this research project, the ethical implications of autonomous robot surgery could be addressed.
Elderly care robots
The ageing population is rapidly increasing in most developed countries, while vacancies in elderly care often remain unfilled. Therefore, elderly care robots could be a solution, as they relieve pressure of the carers of elderly people. They can also offer more specialised care and aide the person in their social development. However, the information recorded by the sensors and the video-images recorded by cameras should be protected well, as the privacy of the elderly should be ensured. In addition to that, robot care should not infantilise the elderly and respect their autonomy.
New technology robot (?)
Facial recognition (Just like Facebook) (happy/not happy)
Facebook uses advanced Artificial Intelligence (AI) to recognise faces. This data can be used or misused in many ways. Totalitarian governments can use such techniques to control the masses, but care robots could use facial recognition to read the emotional expression of the person they are taking care of. In this research project, facial recognition for emotion regulation can be explored, as there are interesting technical and ethical implications that this technology might have on the field of robotic care.
Subject
Facial recognition (Just like Facebook) (happy/not happy)
The use of Convolutional Neural Networks (CNNs) for the purposes of emotion recognition.
Sub-subjects
What is a possible application of our CNN emotion recognition technology?
What is a suitable deep learning method to analyse dynamic facial expressions? (transfer learning)
What are the requirements for the dataset that will be used?
What are the best features to use for facial expression analysis?
Is the use of facial recognition in conflict with privacy?
What are the consequences of false-positives versus false-negatives?
Which users and enterprises would benefit from our software?
Are there legal issues conserning facial recogition?
Training set
- How large does it need to be - where do we get it - How can we garantee that the set is not biased
Test
- use a test set and a validation set (separate from the training set) - real live
USE evaluation of the initial plan
User - Target User Analysis As mentioned by researchers from the Amsterdam Study of the Elderly (AMSTEL), about 20% of the Dutch elderly report that they experience feelings of loneliness. They have often lost a significant part of their social contacts and possibly their partner, leading to loneliness. The research links loneliness to the onset of dementia. Therefore, the reduction of social isolation is detrimental to both the quality of life and the mental state of the elderly.
While emotion recognition can be used on various kinds of target groups (see state-of-the-art section), the high levels of loneliness amongst elderly are the motivation for the choice of elderly as our target group. However, elderly people are still a broad target group with a wide range in needs, in which the following categories can be defined:
- Elderly people with regular mental and functional capacities.
- Elderly people with affected mental capacities but with decent physical capabilities.
- Elderly people with affected mental and physical capacities.
All of the categories of elderly people might cope with loneliness, but category 2 and 3 are more likely to need a care robot. They are also a vulnerable group of people, as they might not have the mental capacity to consent to the robot's actions. In this respect, interpreting the person's social cues is vital for their treatment, as they might not be able to put their feelings into words. For this group of elderly, false negatives for unhappiness can especially have an impact. To deduce what impact it can have, it is important to look at the possible applications of this technology in elderly care robots.
As the elderly, especially those of categories 2 and 3, are vulnerable, their privacy should be protected. Information regarding their emotions can be used for their benefit, but can also be used against them, for example to force psychological treatment if the patient does not score well enough on the 'happiness scale' as determined by the AI.
Society Elderly care robots can relieve the pressure on the healthcare system and offer more specialised and intensive care than human carers can provide. Therefore, these robots can be a viable solution for the increase in the ageing population that occurs in most developed countries.
Enterprise
Plan
contains a subject (Problem statement and objectives), What do they require?, objectives, users, state-of-the-art, approach, planning, milestones, deliverables, who will do what, SotA: literature study, at least 25 relevant scientific papers and/or patents studied, summary on the wiki!
Interesting persons
Emilia Barakova
Sources
1) https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8039024
2) https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=956083
3) https://link.springer.com/content/pdf/10.1007%2Fs00521-018-3358-8.pdf
4) https://link.springer.com/content/pdf/10.1007%2F978-94-007-3892-8.pdf
5)Extended deep neural network for facial emotion recognition, with extensive input data manipulation: https://reader.elsevier.com/reader/sd/pii/S016786551930008X?token=3E015F2B3E9E6290D0EA5A3C8CA42C6F7198698E6A17043ADA159C2A5106C4053CBDEE27E39196AE6C415A0DDAF711F4
6) https://ieeexplore.ieee.org/abstract/document/1556608
7) https://pdfs.semanticscholar.org/e97f/4151b67e0569df7e54063d7c198c911edbdc.pdf
8) Bayesian face recognition https://www.sciencedirect.com/science/article/pii/S003132039900179X
Kalman filters for emotion recognition:
9) https://link.springer.com/chapter/10.1007/978-3-642-24600-5_53: Kalman Filter-Based Facial Emotional Expression Recognition This article uses a 3D candide face model, that describes features of face movement, such as 'brow raiser' and they have selected the most important ones according to them. The joint probability describes the similarity between the image and the emotion described by the parameters of the Kalman filter of the emotional expression as described by the features, and it is maximised to find the emotion corresponding to the picture. The system is more effective than other Bayesian methods like Hidden Markov Models and Principle Component Analysis.
10) https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4658455: Kalman Filter Tracking for Facial Expression Recognition using Noticeable Feature Selection. This paper used conventional CNNs to recognise the facial expression, but the tracking of the features was carried out with a Kalman Filter.
11) Facial recognition with the Google glass, for children with Autism Spectrum Disorder (ASD): https://humanfactors.jmir.org/2018/1/e1/ Second Version of Google Glass as a Wearable Socio-Affective Aid: Positive School Desirability, High Usability, and Theoretical Framework in a Sample of Children with Autism. See also https://www.youtube.com/watch?v=_kzfuXy1yMI for a demonstration of Stanford's autismglass.
12) But autistic children are not the only target group that has difficulty recognising emotions in others. This is also the case for elderly: https://www.tandfonline.com/doi/pdf/10.1080/00207450490270901. EMOTION RECOGNITION DEFICITS IN THE ELDERLY. This is problematic, as primary care facilities for the elderly try to care using their emotions, e.g. to cheer the elderly person up by smiling.
13) https://www.researchgate.net/profile/Antonio_Fernandez-Caballero/publication/278707087_Improvement_of_the_Elderly_Quality_of_Life_and_Care_through_Smart_Emotion_Regulation/links/562e0bc808ae518e34825f40/Improvement-of-the-Elderly-Quality-of-Life-and-Care-through-Smart-Emotion-Regulation.pdf. This paper proposes that the quality of life of the elderly improves if smart sensors that recognise their emotions are installed in their environment. DOI: 10.1007/978-3-319-13105-4_50
14) https://tue.on.worldcat.org/oclc/4798799506 "Face recognition technology: security versus privacy" good source for arguments about face recognition. Keep in mind that we plan on developing software to recognice emotions not to identify faces. Also gives current (2004) state of face recognition technlogy.
15) https://www.mdpi.com/2073-8994/10/9/387/htm "Smart Doll: Emotion Recognition Using Embedded Deep Learning" This article describes a doll which uses local emotion recognition software. Exactly the kind of software we want to develop. Cohn Kanade Extended is used as database for facial expressions.
16) Neural network for emotion recogition, used because it can adapt to the user and context of the situation. (User and context adaptive neural networks for emotion recognition) https://www.sciencedirect.com/science/article/pii/S092523120800218X
17) By using a technique called "transfer learning", neural networks can be trained on a certain set of images, unrelated to the goal of the neural network. After this, the network can be trained on a small data set, so it can implement the needed functionality. https://www.researchgate.net/profile/Vassilios_Vonikakis/publication/298281143_Deep_Learning_for_Emotion_Recognition_on_Small_Datasets_Using_Transfer_Learning/links/56e7b18408ae4c354b1bc8d8/Deep-Learning-for-Emotion-Recognition-on-Small-Datasets-Using-Transfer-Learning.pdf
18) https://ieeexplore.ieee.org/abstract/document/5543262 About the "Cohn Kanade Extended" data set