Retake Embedded Motion Control 2018 Nr3

From Control Systems Technology Group
Revision as of 15:41, 5 August 2018 by S169280 (talk | contribs) (→‎Name)
Jump to navigation Jump to search

This wiki describes and explains the software that was made for and implemented on the PICO robot to complete the retake of Embedded Motion Control course 2017-2018. The mission of the retake EMC 2018 is describe in the subsection ‘The challenge ‘Follow me!’’.

The robot that is used during the project is PICO. PICO has a holonomic wheelbase with which it can drive, a Laser Range Finder (LRF) from which it can gather information about the environment (blocked/free space) and wheels that are equipped with encoders to provide odometry data. All software that is developed has to be tested on the robot. There is also a simulator available which provides an exact copy of PICO’s functionalities. PICO itself has an on-board computer running Ubuntu 16.04. The programming language that is used during the course and the retake is C++ and Gitlab is used to store the cod

Name

TU/e Number Name E-mail
1037038 Daniël (D.J.M.) Bos D.J.M.Bos@student.tue.nl

Initial Design

Introduction:

For the initial design, the requirements will be discussed as well as the functions and their specifications. Moreover, a list of the used hardware components and the diagram of the interface are shown below.


Requirements

  • Execute all tasks autonomously.
  • The POI will start initially close to and is detectable at standstill.
  • Finish the challenges within 2 minutes.
  • The POI will move in such manner that, in most cases, two legs are visible.
  • The POI will pass trough the middle of the target strips.
  • The PICO must cross 80% of the target strips.
  • The PICO must follow the POI at a distance of approximately 0.4 [m].
  • Perform all tasks without bumping with a person.
  • Perform all tasks without getting stuck in a loop.


Specifications The specifications are based on the requirements.

The POI

  • The maximum velocity of the POI is 0.5 [m/s].
  • The target strips are markers on the floor but PICO can’t recognize.
  • The target strips are each 1 [m].

The PICO

  • The maximal transitional velocity of PICO in any direction is 0.5 [m/s].
  • The maximal rotational velocity of PICO is limited to 1.2 [rad/s]
  • PICO should not stand still or make no sensible movements for periods over 30 [seconds].
  • The PICO must follow the POI at maximum distance of 0.4±0.2 [m].
  • PICO has to finish the challenge within 2 [min].

The targets strips

  • The width of targets strips are each 1 [m].
  • The number of target strips is around 5.

Skill function:

Task funciton: Components

To be able to execute the Follow me!’ challenges the PICO robot, already mentioned above, will be used. The following hardware components will be utilized: Actuators: Holonomic base with three omni-wheels.

Sensors:

  • Laser range finder (LRF): To detect the distances to objects in the environment.
  • Range: To be determined
  • Field of view: 270 degrees
  • Accuracy: To be determined

Computer running Ubuntu 16.04.

2Initial Design

dvxcdv

2Idf