Second project: Educative game for blind children

From Control Systems Technology Group
Revision as of 22:00, 26 February 2018 by S157223 (talk | contribs)
Jump to navigation Jump to search

0LAUK0: Robots Everywhere Group 2

Group members

  • Yngwie Baron (0936539)
  • Axel Deenen (0947031)
  • Moos Müller (0936214)
  • Dimitar Nikolov (1000095)
  • Wybe van Vlokhoven (0914565)

Project definition

Problem statement

There are not many resources or convenient ways to practice math and mathematics related skills for blind people. Overall, they have less reading resources that provide an adequate explanation. This is not necessarily a problem of the books themselves, but the fact that without a way to visually represent math and observe the whole exercise it becomes very tedious for them to do problem solving effectively. Take for example geometry or longer and more complicated functions that need solving. The lack of visual aid makes the task much more harder and with most people impossible as it requires you to remember information you would otherwise be able to look back at. Those reasons make it less appealing to young children to learn math and math related sciences. This leads to unfamiliarity with math among blind people.

User analysis

The aimed users are fully blind children in the age of 6-14 years old. Also children with a major visual impairment, such that they cannot read visually-based text, of 6-14 years old are in the group of aimed users. Since the aimed users are fairly young it is very important that the educational game is enjoyable, since the motivation to learn about mathematics will most likely not come from the child itself. A good combination of gameplay and maths must be found to make it so that the user does not have the feeling it is learning or practicing while playing the game. Due to the popularity of online mobile games with a fictional reward points system for kids this enjoyment could be created by making a reward system in the game as well as a competitive element.

End product

At the end of this project, we aim to deliver an app which engages blind children in a light-hearted manner with mathematics. The app does this via nemeth code, a way to characterize math characters in braille. It also utilizes a controller which can present braille characters. It is desirable to use for this an already existing controller, such as an Optalec Easylink 12 Touch, because this means there won't have to be any additional purchases to use this app.

The app should provide children with a brief explanation of a given mathematical operation, such as addition. This explanation can be given in the form of braille, or read out loud by the app. This is to give the child the necessary conceptual knowledge. The core of the app will be a game in wich children are challenged to apply basic arithmetic operations as fast as possible when given a certain question. Two children, or a child and a bot, compete in a game in which they are asked to solve mathematical problems. Whoever answers first, and correctly, gains points. Whoever has the most points by the end of a given number of questions wins the game. We expect the app to function by the end of this project on a phone or pc, with all necessary preperations made to attach a controller to it and have it function immediately. It is however not our intention to actually attach a controller and check if all the functions we envisioned work as such. This is due to the relatively high cost of such a device. In short, we aim to make an app which turns what is ordinarily a tedious and slow process into something enjoyable for blind children.

Requirements

  • A tutorial needs to be present that introduces and teaches the math symbols.
  • A game which challenges the player to do math exercises which focuses on a specific character.
  • The option to play with other players online.
  • Incentives to keep the player engaged with the game on a long term (gain points for playing and more if one does well, online ranking so one can compare himself/herself with other players).
  • Game needs an audio function to read out the questions.
  • A practice mode that is single player and can be played offline.
  • Multiple difficulties where harder mathematical syntaxis are used on a higher difficulty.
  • Input from the user is obtained by buttons.

Approach

The way the final product is made consists of several stages. In the first stage knowledge is gathered. During this stage sources will be found on fields of educational benefits of games, games for blind people but also the way mathematics is taught to the blind. Interviews with an expert on the field of educating blind people will give insight into the possible requirements for the device. During this stage the things that the device should be able to do are defined. After all the requirements are quantified and the desired abilities are listed the second stage can begin. The second stage will be focused on writing the software necessary to fit the requirements. The final product would be an app that will run on a smartphone connected to some sort of device able to show braille. But for the moment it is enough to simulate the final device’s workings on a laptop since it is easily adapted to work with a smartphone. The final stage would be the testing phase. During this stage it is checked if all the requirements are met and everything works.

Results from literature research

After conducting a vast literature research, a brief summary of all articles and patents deemed relevant has been made. These summaries are listed below.

Preparation in and use of the Nemeth braille code for mathematics by teachers of students with visual impairments [1]
This paper describes a study about the use of the Nemeth braille code. 135 teachers, that have followed a course in Nemeth code and teach visually impaired students, were observed. Also a survey was conducted to learn about the current state of Nemeth code usage in the United States.

Digital Games in Education : The Design of Games-Based Learning Environments [2]
This paper examines the evolution of how videogames are designed. From that the characteristics of game-based learning are analyzed. Remaining obstacles and challenges concerning the use of games for learning are discussed. Several types benefits that videogames can offer are listed as well as the use of game-based learning in school.

Proceedings of the 3rd international conference on disability , virtual reality and associated technologies [3]


Science Learning by Blind Children through Audio-Based Interactive Software [4]


Learning through games [5]

Development of navigation skills through audio haptic videogaming in learners who are blind [6]

VBGhost: a Braille-Based Educational Smartphone Game for Children [7]

Virtual Mobile Science Learning for Blind People [8]

MathMelodies: Inclusive Design of a Didactic Game to Practice Mathematics [9]

Game-based Learning: Latest Evidence and Future Directions [10]

Planning

Below is a shown the planning. If a cell is colored green, it means that the task presented in the same row should be done in the week of the same column. In red are shown the milestones (Please click on the image to view in the highest resolution).

PlanningGroup2.PNG

Research

Possible collaboration with Visio

We contacted an employee of Visio, Don van Dijk, who has experience with teaching math to blind children. When we explained our idea, he said he was working on something similar, and suggested we might help each other out. We have decided to follow up on his proposal, and have arranged for us to call him next thursday.

Solution

Discussion

Conclusion

References

  1. Amato, S., & Rosenblum, L. (2004). Preparation in and use of the Nemeth braille code for mathematics by teachers of students with visual impairments. Journal of Visual Impairment & Blindness (JVIB), 98(8), 1–25. Retrieved from http://www.afb.org/JVIB/jvib980804.asp
  2. Gros, B. (2007). Digital Games in Education : The Design of Games-Based Learning Environments. Journal of Research on Technology in Education, 40(1), 23–38.
  3. Version, P., & Proceedings, C. (2000). Proceedings of the 3rd international conference on disability , virtual reality and associated technologies ( ICDVRAT 2000 ).
  4. Sánchez, J., & Elías, M. (2007). Science learning by blind children through audio-based interactive software. Annual Review of CyberTherapy and Telemedicine, 157.
  5. Hoffmann, L. (2009). Learning through games. Communications of the ACM, 52(8), 21. https://doi.org/10.1145/1536616.1536624
  6. Sánchez, J. (2012). Development of navigation skills through audio haptic videogaming in learners who are blind.Proceedings of the 4th International Conference on Software Development for Enhancing Accessibility and Fighting Info-exclusion.
  7. Milne, L. R. et al. (2013). VBGhost: a Braille-Based Educational Smartphone Gamefor Children. University of Washington.
  8. Sánchez, J. Flores, H. (2008). Virtual Mobile Science Learning for Blind People. Cyberpsychology & behavior: the impact of the Internet, multimedia and virtual reality on behavior and society. DOI: 10.1089/cpb.2007.0110
  9. Gerino, A. et al. (2014). MathMelodies: Inclusive Design of a Didactic Game to Practice Mathematics. ICCHP 2014, Part I, LNCS 8547, pp. 564–571.
  10. Perrotta, C., Featherstone, G., Aston, H. and Houghton, E. (2013). Game-based Learning: Latest Evidence and Future Directions (NFER Research Programme: Innovation in Education).

Coaching Questions Group 2