PRE2015 4 Groep5
Group members
- Aniceta, N.M.F (0876672)
- Boelsums, N.M (0964376)
- Brandts, A (0895917)
- Haenen, S.R.R (0889428)
- Kuijpers, J.J.L (0838617)
Introduction
Abstract
Problem statement
The world needs to produce at least 50% more food to feed 9 billion people by 2050. But climate change could cut crop yields by more than 25%.[1] With this in mind we need to look for novel solutions to the problem of insufficient food production. This solution will need to take the interests of users, society, and enterprise into account. Moreover, this solution needs to surpass the state of the art by employing cutting-edge technology.
Motivation
Nutrition is vital to sustaining life, and food security is important for political stability and human welfare. We want to address the problem of food availability due to its relevance: continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years.[2]
Agriculture is an integral part of the European economy and society. It provides the basis for food, feed and non-food products to meet the demands of consumers and a wide range of industries.[3] By designing a solution to the agricultural challenge we will need to take into account the needs of users: like consumers of food, society: the ecological impacts of our solution, and enterprise: the solution needs to be competitive in order to gain an economical advantage.
The agricultural industry is ever advancing, not only is the biological aspect of farming being researched, there are also improvements in automation,[4] and we want to explore the automation of this industry. We want to develop a solution that allows for automation of food production beyond the state of the art, moreover the solution needs to be scalable.
Mariculture
Mariculture is a specialized branch of aquaculture involving the cultivation of marine organisms for food and other products in the open ocean, an enclosed section of the ocean, or in tanks, ponds or raceways which are filled with seawater. An example of the latter is the farming of marine fish, including finfish and shellfish like prawns, or oysters and seaweed in saltwater ponds.[5]
In this section we will explore mariculture, and explain why we chose it as a solution to the problem previously stated. Mariculture encompasses a wide range of organisms, from the cultivation of water-based plants to the breeding of aquatic animals. For this project we will focus on the cultivation of aquatic plants, and in particular types of seaweed.
Commonly cultivated seaweed species
- The total seaweed production features a lot of brown kelps. These weeds grow in cold water zones, they are long and have a leathery structure. They must be harvested before the water temperature rises to 21 degrees, otherwise the kelps will rot. Kombu (Laminaria Japonica) is used a lot in Japanese recipies for soups, as dried snacks, or in salads. Kombu is a dietary fiber and contains high levels of iodine. In China, 50% of the Laminaria production is meant for industrial purposes for its iodine, algin and mannitol. Due to this, laminaria are considered as one of the best renewable resources and it makes up for a major part of the maricultural sector. Japan has made effort to increase the production but due to its labour intensitive nature, the market is not expected to expand notably. [2] Wakame (Undaria) is the type of kelp you will find in your misosoup. With a subtle sweet flavour and satin-like texture it is most suitable for human consumption. The weed is a rich source of omega-3 and helps burn fatty tissue. However, it is also in the top 100 of worst invasive species in cold waters, which is partly caused by aquaculture. [ http://www.seaweed.ie/]
- Gelidium amansii and Pterocladia are valuable red algae that can be found at shallow coasts. They can be used in salads and to make agar, a jelly-like substance that can be used for microbiological research and various industrial purposes. [3] They have been cultured in Korea since the last century, but always on a small scale. There have been various attempts to farm the algae at sea, but the slow growth rate and required non-contaminated waters made it unattractive for commercial cultivation.[4]
- Nori or Zicai (Porphyra) are most famous for composing the sushi wraps. The red algae grow in cold and shallow waters in the intertidal zone. After growing in the sea for 50 days, the weeds can be harvested every 10-15 days. The Nori market is stable, the demand is not expected to grow or shrink in the coming years. In Japan, the annual production is valued at 1 billion US dollars.[5]
Mariculture as a solution
Environment
Dead zones
Ocean dead zones are areas with low oxygen levels and hardly any marine life. These areas are caused by agriculture fertilizers that increase the level of nitrogen and phosphorus, also known as eutriphication. The result is a rapid increase in phytoplankton, because they are 'build' from phosphorus and nitrogen. These algal blooms cause deadzones. The number of deadzones is increasing. As a result, the fertility of the marine life drops dramatically, and in more extreme cases, fish fall unconcious and then suffocate. Slow moving creatures on the seafloor are unable to escape. Seaweed is capable of uptaking both nitrogen and phosphorus and replacing it with oxygen. For this reason seaweed is also cultivated around fishfarms. Seaweed would be a cheap although perhaps slow solution in the reviving of deadzones.[6]
Climate
Locations
To determine the best location for a sea-farm we have to take into account several aspects. The temperature of the seawater should be the right temperature for seaweed. For example the best temperature for growing Eucheuma is 20-25 °Celsius, but there are also species that can grow in water of 10 °Celsius. So seaweed can grow in almost every ocean. The depth of the sea does not matter for the seaweed because it grows from the surface downwards. But for the farm itself the depth does matter. Anchoring the farm is easier in a shallow area in the ocean. Commonly these areas are near the coast, an advantage of sea-farms which are near the costs is that the transport from farm to the secondary users is cheaper. Also building and maintaining the farm is easier if it is closer to the mainland. The dead zones are also located near the seashore, so the dead zones are an extra motivation of locating the sea-farms there. A disadvantage are the shipping routes that are located in these areas. Thankfully, these routes are taken by most commercial ships. This leaves open spots near the coast where there are no passing ships and where the seaweedfarms could be located. Important shipping routes at the Dutch coast [7] With the sealevels rising due to climate change, and the seafarm's habit breaking waves, it would be beneficial to locate the farm nearby a shore that is threatend by rising sea levels.
Nutrition
State of the art
Benefits and drawbacks
Benefits
- Income, employment and foreign exchange (import/export).
- Pond-farms can make use of otherwise infertile and underutilized land.
- Large-scale farms influence coastal water movement, causing enhanced sedimentation and better protection of the coastal areas from erosion.
- Introduction of seaweed culture rafts, ropes, anchors, etc. can increase the surface area of substrate, which may enhance production of other marine organisms in a similar way to what artificial reefs have been shown to do.
- Seaweed culture mostly relies on a natural nutrient supply.
- Seaweed farms offer shelter for other animals, increasing the biodiversity.
- The area below seaweed farms can be used for invertebrate farming such as sea cucumbers.
- Seaweed farms may be placed further offshore to better utilize offshore resources.
Drawbacks
- Conflicts with other users of the coastal zone.
- Concerns over potential environmental impacts.
- Large surface area required for viable seaweed culture.
- Site preparation may involve removal of native animals, plants and destroying the natural environment (e.g. removing rocks) which may damage the local ecosystem.
- Routine management can result in damage through trampling and accidental damage of the local ecosystem.
- Physical shading of an area can occur. The effects of this have not been well-studied.
- Due to the large surface area required, the visual impact can be a strong argument against seaweed farms, especially in coastal areas.
- Intensive farming may require additional fertilization. This has yet unknown effects on the local ecological system.
- Large farms and intensive farming may cause deceases to spread more rapidly, causing production loss and other negative effects for the ecology.
- Intensive farming may reduce the nutrient levels of coastal waters, making it harder for other organisms to survive.
Types of farms
Anchored
Drifting
Tasks to be carried out on farms
Primary tasks
- Seeding
- Cleaning
- Harvesting
Secondary tasks
- Checking the quality of the plants
- Removing corrupt plants
- Pruning
Stakeholders
- Why? => Provide a feasible feedback
- Users: Livestock farmers (veevoer), Foodbuyers
- Enterprise: Seafarmers
- Society: Reduces the shortage of food
The USE aspects: The first users of the farming-robots are the farm-owners. They would not have employees anymore, but they would have robots. The farm-owners would use the robots to set and harvest the seaweed. The secondary users are the store-owners who sell the seaweed. The production costs are lower for product that are made with autonomic robots, so the store-owners can make more profit. Also the food industry is a secondary user which use the seaweed to make other food. The third users are the people who would eat the seaweed. Seaweed farming has several advantages for the society, but compared to normal food industry it has not the main disadvantages of (land) agriculture. The advantages of mariculture compared to normal agriculture are: there is enough space for a sea-farm. Deforestation to make more space is not necessary for mariculture. Sea-farms do not cause soil salinity and sea-farms do not need a crop rotation or a yearly greenfield land because the ocean flow serves enough nutrition to farm continue. An advantage of sea-farming is that it will benefit the ocean’s biosphere. The areas where fish cannot live , the dead zones, will disappear. The robots could also check the state of the ocean. Enterprise: It becomes harder and harder to feed the growing population with only agriculture. A good solution for this is use the oceans for food production. Sea-farming is the future. Autonomic robots are also the future. A combination of these two aspect is interesting for companies. The production is relative cheap compared to agriculture. And because in the future there might be food shortage, so new ways of food production are necessary. And if the farms are located in international waters the farmers do not comply to a lot of rules, thus food production will be easier.
User
Seaweed farmers.
Drawback: Introduction of our system on the mariculture market could cost the jobs of the few brave seaweed farmers we have today. These farmers operate on a small scale on a small market and would be easily competed out. To prevent this, our systems user group is are the already existing seaweed farmers that want to expand their business, and the more industrialized farmers in Asia.
Society
Enterprise
Maritime robotics
- Specifications
Buoyancy:
Mass of water - mass of robot =
- + Robot will return to the surface.
- 0 Gravity free floating :D
- - Make sure the robot can drop some weight or it will never return.
Pressure:
Increases 1 bar every 10 meters. Is important to consider in the design of the farm, up to what depth can it function?
Communication & orientation:
Above water: iridium SBD
Under water:
No wireless communication possible and lasers are very unreliable. So... we must use accoustic waves. It is the best thing we have but still not ideal because the speed of sound in water is slow. It is never really clear what is ahead, expecially when the robot is far away.
- Practical tips
It's not all that difficult and expensive! Make sure that you can retrieve your robot when it breaks. Keep it small. A lot can already be achieved with just a water proof container with a battery, a phone and some tampons to soak up leaked water. Drinking bottles can be used as as pressure proof containers in shallow waters. Syringes can be usedfor building engines to change the weight of the verhicle and regulate the buoyancy. Sonars are very expensive but "fishfinders" are a good alternative.
- Responsibility
The laws of the sea are rather unclear, but here are some general rules:
- Dont go to nature protected areas.
- Beware of materials that can be harmful (also think about paint for example)
- Dont switch a robot between enviroments. It gives certain species a chance to invade an ecosystem whch can be harmful.
- Be aware that salt water is conductive. Especially when touching your circuits!
Types of robots
- The Sensor Buoy: floats at one spot on the surface. Mainly used for acquiring data.
- The Traveler: like the sensor buoy but moves using solar energy and wave energy(enhances wave movement to accelerate)
- Underwater Airplanes: like an airplane but with tiny wings, uses propellor. Can be tricky because it can not stop and it is unsure what lies ahead.
- Diving Box: often equipped with lots of sensors. Can move in any direction and float in midwater. However, it is very energy inefficient and can only be used for a short moemnt unless you attach a thether.
- Wild cards: weird, specialized and animal like robots.
Locomotion
- Jet propulsion — water is taken in and propelled out at high speed, using a directed nozzle makes this very maneuverable.
- Ocean current — passively drifting along the ocean current.
- Propeller — a classic ship's screw to propel forwards and backwards.
- Undulation — moving the body like a fish does.
- Wind — using the power of the wind to sail.
Sensing
- Acoustic Doppler current profiler — measures the speed and direction of ocean currents using the principle of “Doppler shift”.
- Camera — for visual data, has a limited range.
- Conductivity — together with temperature and depth information, a good estimate of the salinity may be determined.
- GPS — find the position, only works above the surface of the water.
- Hydrophone — listen for sounds in the water.
- Oxygen — determine the oxygen levels of the water.
- Pressure — determine the depth the robot is at.
- Semipermeable membrane density — a passive sampling device used to monitor trace levels of organic contaminants. When placed in an aquatic environment, SPMDs accumulate hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), and organochlorine pesticides from the surrounding waters.
- Sonar — is used to find and identify objects in water. It is also used to determine water depth (bathymetry. May disturb marine life.
- Temperature — determine the temperature of the water.
- pH — determine the acidity of the water.
Communication
Proposed design
Description
- Location Our own Dutch North Sea might just be to place to be. With an average temperature of 12 degrees[8], a former deadzone that is struggling with pollution from the many estuaries, and with a country that has always struggled with living beneath a rising sealevel, the seaweed farm has a lot to offer. When we also consider the busy shipping routes in the North Sea, Zeeland would be the most suitable area.
- Farmed type of seaweed The HASP will farm the Laminaria seaweed species. Because of the high demand for it can not be fulfilled with the current techniques, and because it has a low impact on the enviroment.
- System DesignThe design of our system will be largely modelled after the traditional seaweed farms.
distance between lines
Automation
Seeding
Like at normal seafarming, the young seedlings will first be grown at land in a greenhouse in the summer, when the water is hot. Mid-November, when they have grown 10-15 cm, they need to be planted at the seafarm. The seedlings are attached to the vertical lines to grow out, with the upper plants receving more sunlight than the lower ones. Can one of our robots attcach the seeds to the ropes?
Control and hygiene
There are several diseases that could affect the seaweed, caused by bacteria or by the enviroment. These diseases can be recognized visually and envirmental factors can be measured. Sensors would be needed for: illumination (too much or too little light causes rot), fres/salt water level and pollution. All diseases require different treatments, for which we have to think of automated solutions. Harm done by water grazers like fish can be minimized by placing the farm in deep waters, away from the coastal fish and the creatures on the seafloor.
Harvesting
Harvesting can be started in April. The plant grows faster in winter and slower in summer, with a rate of 1.1 cm per day in May. Making up for 2.5 meters a year. The plant can regenerate when it's been trimmed, but will grow slower. The normal age with this practice does not exceed 4 years.
Drying
Transport
Communication to mainland
Mapping tasks to robots
Scalability
Benefits and drawbacks
Benefits
Drawbacks
The robots behaviour underwater would generate sound. Although the underwater world might seem silent to humans, fish experience sound intensly. The effects of human generated sounds on fish might therefore be harmful. Research results vary from little to no effect, to immediate death. Because the variety of sounds and fish is so large, we will try to minimize the sound level but not take extra measures to protect the fish from our robot's noices.
Big Data and IoT
The farm comes equipped with a lot of sensors to monitor its own condition and its enviroment. Using all of this data one can analyze it in real time, and after collecting more data extrapolate long-term trends. With all the robotic agents on the farm, combined with the data collected, the farm can be administrated remotely. The farm can be made smart to send out maintenance calls on its.
Science
The data collected by the farm and its robots can be shared with scientists and governments. More farms mean more sensors and thus a larger sensor size. This data would for example be very useful to The European Marine Observation and Data Network (EMODnet) on which engineers and scientist can find all the data available about the european waters. The European Commission has started Marine Knowledge 2020 with the aim to bring to bring all of the marine data from different sources together. This initiative examplifies the need for marine data.
Robot prototype
Design process
The design for the prototype consists of three components, one for the movement, one for grabbing and cutting and one for the Arduino and battery. The robot moves along a cable, for our prototype we will use a bicycle chain. The robot has three gearing wheels for a stable movement along the cable. The gearing wheel in the middle is driven by an engine. The component with the Arduino and the battery is hanging below the movement-component, just like a chairlift. This component should be heavy enough to sink, this is necessary to keep the bicycle chain on tension. Below this component is the cut-and-grab-component, and is joined to the mothership with rope or a telescoping arm. This rope or telescoping arm is needed for a vertical movement, the robot should be able to cut at different depths. The claw should be able to grab seaweed that might have flowed away a bit, so the claw should be able to move horizontal. This happens by a telescoping arm. The scissors should be placed below the claw, otherwise the robot would cut seaweed that is not hold by the claw.
Technical description
Demonstration
Business and law
In 2014, the total annual value of produced seaweed was $6.4 billion. Worldwide, 93.8% of the global total production of aquatic plants came from aquaculture. Countries in East and Southeast Asia dominate seaweed culture production.[6] About 25 million tonnes of seaweeds and other algae are harvested annually for use as food, in cosmetics and fertilizers, and are processed to extract thickening agents or used as an additive to animal feed.[7] For the demand of food-grade seaweed to grow, there needs to be a dietary trend towards protein-rich vegetables, which seems to be the case. Growing the demand for seaweed requires a shift in the consumer's perception of seaweed as a food. Seaweed can be processed to be used as a source of nutrients for certain processed foods. There is increasing demand for seaweed as an agricultural supply, to use as animal food. It is also possible to use seaweed as a source for certain chemicals, i.e. for use in cosmetics.
Business case
Cost vs. profit
Laws
International law
European law
Dutch law
Looking ahead
Future farms
The farm we have outlined only concerns the cultivation of seaweeds. However, farms can be augmented by employing bivalves in order to filter the water of pollutants.[8]
Recommendations
Horizon 2020
Applicable areas:
- Agriculture & forestry
- Aquatic resources
- Bio-based industries
- Environment & climate action
- Food & healthy diet
- Innovation
- SME (small-medium enterprise)
Relevant research calls:
- High value-added specialized vessel concepts enabling more efficient servicing of emerging coastal and offshore activities. (link) € 7 million
- New sources of proteins for animal feed from co-products to address the EU protein gap. (link) € 15 million
- Promoting and supporting the eco-intensification of aquaculture production systems: inland (including fresh water), coastal zone, and offshore. (link) € 6 million
Discussion
Conclusion
Sources and references
Sources
- CCCen (2015), Maritime Robotics 32C3
- Doty, M.S. & Caddy, J.F. & Santelices, B. (1987), Case Studies of Seven Commercial Seaweed Resources
- Foscarini, Roberto & Prakash, Jayant (1990), Handbook Seaweed Cultivation
- Gruendl, Harald & Haele, Ulrike & Kellhammer, Marco & Nägele, Christina (2014), Tools for the Design Revolution - IDRV Institute of Design Research Vienna
- Juanich, Godardo L. (1988), MANUAL OF RUNNING WATER FISH CULTURE(1. EUCHEUMA SPP.)
- Kitadai, Yuuki & Kadowaki, Shusaki (2007), Growth, nitrogen and phosphorous uptake rates and O2 production rate of seaweeds cultured on coastal fish farms
- Kleis, Roelof (2010), Growing seaweed can solve acidification
- Lacey, Stephen & Mellino, Cole (2011), Seaweed Aquaculture: An Answer to Sustainable Food and Fuel?
- Merchant, Brian (2015), The last time oceans got this acidic this fast, 96% of marine life went exinct
- NOAA Ocean Explorer Webmaster (2013), NOAA Observing Systems and Sensors
- Phillips, M.P. (1990), ENVIRONMENTAL ASPECTS OF SEAWEED CULTURE
- Popper, Arthur N. & Hastings, Mardi C. (2009), The effects of human-generated sound on fish
- Smith, Bren (2016), The Seas Will Save Us: How an Army of Ocean Farmers are Starting an Economic Revolution
- World map of sea-depth (slow commection), faster image.
- Practical tips can be found in the documentation of the student teams that participated in these competitions:
- euRathlon (2015), Home page euRathlon
- Mate, Marine Advanced Technology Education
- Sauvc (2016), The Singapore AUV challenge
- World robotic sailing championship
References
- ↑ [1]
- ↑ Food Security: The Challenge of Feeding 9 Billion People
- ↑ Agriculture & Forestry
- ↑ Agricultural Robotics and Automation
- ↑ Mariculture
- ↑ A guide to the seaweed industry
- ↑ The State of World Fisheries and Aquaculture 2014
- ↑ Biosorption and bioaccumulation of heavy metals by rock oyster Saccostrea cucullata in the Persian Gulf