PRE2015 4 Groep1

From Control Systems Technology Group
Revision as of 15:24, 8 May 2016 by S141023 (talk | contribs)
Jump to navigation Jump to search


Group members

  • Laurens Van Der Leden - 0908982
  • Thijs Van Der Linden - 0782979
  • Jelle Wemmenhove - 0910403
  • Joshwa Michels - 0888603
  • Ilmar van Iwaarden

Short Project Description

The aim of this project is to create a anthropomorphic robot that can be used to hug others when separated by a large distance. This robot will copy or shadow a hugging movement performed by a human using motion capture sensors. In order to realize this goal the robot AMIGO will (if allowed and possible) be used to perform the hugs while the commandos are generated using Kinect sensors that capture movement done by a human.

Planning & Executed tasks

Week 1

Idee in één zin: Een robot die armbewegingen op afstand kan nabootsen, waarbij wij voornamelijk de nadruk leggen op een knuffelrobot (i.e. een robot die van afstand knuffels kan geven).

Soort robot: Amigo-knuffelrobot

Deelvragen/uitdagingen: 1. Hoe wordt de geleverde kracht van die de amigo/robot geeft aan de geknuffelde persoon terug gevoerd naar de knuffelde persoon (druksensoren, real time?)?

2. Hoe registreer je de beweging registreren van de knuffelende persoon (Ki-nect)?

3. Lkj


Actiepunten:

1. Mailtje over precieze inhoud presentatie volgende week maandag (25-4-2016) - Specifieke idee geven - Ook al USE aspecten? - Idee eindproduct geven - Ook al literatuur?

2. Literatuur/state of the art opzoeken Laurens en Thijs

3. Scenario/situatieschets Jelle

4. Notulen/brainstormsessie maken Joshwa

5. Opzetje Wikipagina maken Joshwa

Week 2

We continued to discuss our idea of a robot capable of shadowing a hugging motion using Kinect. This week we contacted someone from TechUnited and asked if it would be possible to use their robot AMIGO for our project.

Week 3

During our given presentation on Monday 2-5-2016 the teachers indicated that our plan still lacked clarity and our USE-aspects were missing. Thereafter we discussed this with the group for a few hours and then divided the tasks.

After we sent a second email to the people from TechUnited on the Monday we were invited to come to the robotics lab in the building "Gemini-Noord" on Tuesday evening in order to discuss our idea. While the initial plan was to work with AMIGO from the start if possible our plan changed a little bit. The people from TechUnited strongly advised to create a virtual simulation first(something that is done there a lot to test scenarios before applying this on the AMIGO itself) before considering applying this on the real AMIGO. If we could get the simulation to work properly we could consider trying the real AMIGO. The people from the lab told us which software and systems were to be used to make such a simulation.

Jelle, Joshwa and Laurens have discussed the matter since they will be working on the simulation. The three have installed some software and slightly began working on it.

Thijs has processed the USE-aspects in order to finally clarify what can be done to take USE into account for our robot. (als ik wat vergeten ben graag even toevoegen wat mist)

Ilmar has worked on....(ik weet niet meer precies, even toevoegen a.u.b)

Week 4

Jelle, Joshwa and Laurens will work through tutorials to get to know the programming software used to make an AMIGO-simulation.

Week 5

Jelle, Joshwa and Laurens will finish the tutorials this week and hope to lay the groundwork for the AMIGO-simulation

Week 6

Jelle, Joshwa and Laurens will work on the AMIGO-simulation this week

Week 7

Jelle, Joshwa and Laurens hope to finish the AMIGO-simulation this week. If possible they can apply it on the real AMIGO

Week 8

Jelle, Joshwa and Laurens will if possible run tests with the real AMIGO using the AMIGO-simulation and prepare the final demonstration with either the AMIGO-simulation or AMIGO itself.

Ilmar will work on and finish the slides for the final presentation.

Week 9

The Wiki will receive its final update this week. The course-related presentations suggest that the final presentation is this week. Depending on the exact date this week will serve as a buffer to run some final tests with either AMIGO or the AMIGO-simulation itself.

Scenario: Problem Sketch and solution

One of the consequences of globalisation is that work will become more specialized. The job that fits you may no longer be found in your local area, in your city or even in your country. Work will separate people from their homes, their relatives. To provide for your family might imply not being able to bring your children to bed. People will get ever more lonely due to a lack of physical interaction with loved ones.

We hope that our robot can provide in the longing of people for physical contact with loved ones by enabling its users to hug others over a long distance. The receiver of the hug will have an anthropomorphic robot in their homes which will act as an avatar for the user sending the hug. The sender’s hugging motion is captured via camera’s and that data is used to make the robot emulate that motion. A microphone and speakers are used to let the users communicate spoken words via the robot. Virtual reality can be used to give the sender a more immersive hugging experience.

State Of The art/ Literature research

NOG TOEVOEGEN

Stakeholders (USE)

NOG MAKEN

Requirements AMIGO

Must-have

  • The AMIGO must be able to process the arm-movements of the hugging person in considerable time (ideally in real time, but probably unrealistic) and mimic them credible and reasonable fluently to the person ‘to be hugged’.
  • The arms of the AMIGO must be able to embrace the person ‘to be hugged’. More specifically; the AMIGO must be able to make an embracing movement with his arms.

Should-have

  • There should be a force-stop function in the AMIGO so that the person ‘to be hugged’ can stop the hug anytime if he/she desires (for example because he/she feels uncomfortable).
  • The AMIGO should have a feedback function as to if and how much his arms are touching a person (pressure sensors).

Could-have

  • The AMIGO could get a message from the ‘hug-giver’, the person in another place wanting to give a hug.
  • The AMIGO could inform the ‘hug-receiver’ that a hug has been ‘send’ to him/her and ask if he/she wants to ‘receive’ the hug now.
  • The AMIGO could receive a message from the ‘hug-giver’ that the hug has ended.

Used Literature/Further reading

https://www.youtube.com/watch?v=KnwN1cGE5Ug

https://www.youtube.com/watch?v=AZPBhhjiUfQ

http://kelvinelectronicprojects.blogspot.nl/2013/08/kinect-driven-arduino-powered-hand.html

http://www.intorobotics.com/7-tutorials-start-working-kinect-arduino/

Anand B, Harishankar S Hariskrishna T.V. Vignesh U. Sivraj P. Digital human action copying robot 2013

http://singularityhub.com/2010/12/20/robot-hand-copies-your-movements-mimics-your-gestures-video/

http://www.telegraph.co.uk/news/1559760/Dancing-robot-copies-human-moves.html

http://www.emeraldinsight.com/doi/abs/10.1108/01439910310457715

http://www.shadowrobot.com/downloads/dextrous_hand_final.pdf

https://www.shadowrobot.com/products/air-muscles/

MORE TO FOLLOW