PRE2015 3 Groep1 requirements

From Control Systems Technology Group
Revision as of 18:31, 6 March 2016 by S149304 (talk | contribs)
Jump to navigation Jump to search

Requirements

Functional

Must have

The drone must be able to fly, especially outdoors, in a changing environment. The building site changes a lot, so the drone must be suited for every day a bit different situation, and the drone must be able to fly its way through this building site. The drone must also be able to land safely on its own. De drone must be able to navigate through this building site to the hot spots indicated beforehand. By its navigation it must be able to find its docking station at the end of its shift or in case the battery is low. It must reach its docking station before the battery is completely empty. The drone must be able to communicate abnormalities to the guard and react at the guards decisions. Thereby the drone must never take actions it’s not allowed to without explicit permission of the guards or reject the guards decisions. Another communication aspect is the fact the drone must always confirm its location (coordinates e.g. by GPS) to the guards, and signal the guard if there occurs a defect in the drone. Defects can be a take down by for example an intruder, but also a broken propellor or suddenly empty battery. The drone must be able to detect intruders by an infrared camera and its movement sensor. The drone must be able to detect at least 99% of all intruders. After an intruder is detected and the guard has confirmed the intruder, the drone must be able to follow the intruder and take photo’s of the intruder. These photos must be send to the guard and saved somewhere there. The drone must film its restricted area .

Should have

The route it navigates must be randomly. So the drone is not predictable and therefore better applicable and less predictable. Thereby it should even land safely if one of the propellers or motors shuts down. The drone should have nearly continuous streams of data feeds, to adjust its navigation in an optimal manner. Missing data or slowly arriving data could negatively influence navigation and the reaction of the drone. It should not be possible to hack the drone. The weight of the drone should be as less as possible to reduce the impact of accidentally occurring collisions by reducing the kinetic energy. But the drone must be able to withstand mediate/moderately strong weather forces , where some robustness and therefore weight is needed. The optimal balance between those two must be found. The drone should be as silent as possible, because otherwise possible intruders will hear the drone. The done should be undetectable by its sound for distances of 10 meter or more. The drone should be easy to use for the guard. Giving validation for actions must not take long and understanding the signal the drone sends must also be easy in order to react as fast as possible.