PRE2022 3 Group2

From Control Systems Technology Group
Jump to navigation Jump to search

Group members

Name Student Number Study
Clinton Emok
Richard Farla 1420380 BCS
Yash Israni 1415883 BCS
Tessa de Jong 1498312 BPT
Kaj Scholer 1567942 BME
Pepijn Tennebroek 1470221 BPT

Week 1

Name Total Breakdown week 1
Clinton Emok Meeting (1h),
Richard Farla 4h Brainstorm session (1h), meeting (1h), literature research (1h), milestones (1h)
Yash Israni Meeting (1h),
Tessa de Jong 4h Brainstorm session (1h), meeting (1h), problem statement (1h), literature research (1h)
Kaj Scholer Brainstorm session (1h), meeting (1h), milestones (1h)
Pepijn Tennebroek 4h Brainstorm session (1h), meeting (1h), problem statement (1h), literature research (1h)

Task division:

  • Problem statement and objectives - Pepijn & Tessa
  • Who are the users? - Clinton
  • What do they require? - Yash
  • Approach, milestones and deliverables - Kaj & Richard
  • Who’s doing what? - Everyone
  • State-of-the-art literature - Everyone
  • Look at past projects - Everyone

Problem statement and objectives

“Two large earthquakes struck the southeastern region of Turkey near the border with Syria on Monday, killing thousands and toppling residential buildings across the region.” (AJLabs, 2023) The earthquakes were both above 7.5 on the Richter scale. Which caused buildings to be displaced from foundations with people still in it. Some people survived the fall when a building collapsed, but then they are still trapped between all of the rubble.

After earthquakes of high magnitude, it is necessary to rescue survivors from destroyed buildings as fast as possible. Namely, the chances of finding people alive in rubble fade with each passing day. However, it can be hard for human rescuers and rescue dogs to reach these areas due to the dangers of collapsing buildings. Therefore, the usage of robotics can be introduced in these rescue operations. In this report it is investigated how the usage of robotics could improve localizing alive people after earthquakes of high magnitude. This would hopefully increase the number of people that is saved after such a natural disaster. In order to do this, literature research is conducted …

Who are the users?

What do they require?

Approach, milestones and deliverables

Milestones/Deliverables

Week Milestones
Week 1 Topic, problem identification, planning, state-of-the-art literature research
Week 2 Further literature study, user analysis, MoSCoW, CAD modelling, research for simulation possibility, research/order electronics
Week 3 Further literature study, complete CAD modelling, start simulation
Week 4 Work on prototype, work on simulation
Week 5 Work on prototype, finalize simulation
Week 6 Finalize prototype, gather results from testing
Week 7 Evaluate results and conclusion
Week 8 Complete wiki and finish final presentation

Approach

Literature Research

  • Online (Articles, research papers, patent, etc.)

User Study

  • Surveys
  • Interviews

CAD Modelling

  • Fusion 360

Simulation

  • Unity

Prototype

  • Collect all electronics
  • 3D print CAD model

Wiki

  • Keeping weekly track of progress

Who’s doing what?

Names Tasks
Clinton Emok
Richard Farla
Yash Israni
Tessa de Jong
Kaj Scholer CAD Modelling
Pepijn Tennebroek

State-of-the-art literature

Clinton

1.

2.

3.

4.

5.

Richard

  1. https://patents.justia.com/patent/11548151 --> closely related to traversing terrain that is riddled with fallen objects and debris
  2. https://api.scienceweb.uz/storage/publication_files/648/326/617bd96706295___Specially%20Designed%20Multi-Functional%20Search%20And%20Rescue%20Robot.pdf --> proposed search and rescue robot
  3. https://doi.org/10.1002/rob.21887 --> state-of-the-art and future outlook of rescue robots
  4. https://www.mdpi.com/557488 --> drones to detect signs of life in dangerous areas
  5. https://doi.org/10.1109/ICISET.2016.7856489 --> robot for alive human detection in unreachable points of a disaster area

Yash

1.

2.

3.

4.

5.

Tessa

  1. Matsuno, F., Sato, N., Kon, K., Igarashi, H., Kimura, T., & Murphy, R. (2013). Utilization of Robot Systems in Disaster Sites of the Great Eastern Japan Earthquake. Springer Tracts in Advanced Robotics, 1–17. https://doi.org/10.1007/978-3-642-40686-7_1 --> usage of robotics after earthquake in Japan
  2. Lindqvist, B., Karlsson, S., Koval, A., Tevetzidis, I., Haluška, J., Kanellakis, C., Agha-mohammadi, A. A., & Nikolakopoulos, G. (2022). Multimodality robotic systems: Integrated combined legged-aerial mobility for subterranean search-and-rescue. Robotics and Autonomous Systems, 154, 104134. https://doi.org/10.1016/j.robot.2022.104134 --> Spot Boston Dynamics
  3. Tadokoro, S. (Ed.). (2009). Rescue robotics: DDT project on robots and systems for urban search and rescue. Springer Science & Business Media.
  4. De Cubber, G., Doroftei, D., Serrano, D., Chintamani, K., Sabino, R., & Ourevitch, S. (2013, October). The EU-ICARUS project: developing assistive robotic tools for search and rescue operations. In 2013 IEEE international symposium on safety, security, and rescue robotics (SSRR) (pp. 1-4). IEEE.
  5. Lee, S., Har, D., & Kum, D. (2016, December). Drone-assisted disaster management: Finding victims via infrared camera and lidar sensor fusion. In 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE) (pp. 84-89). IEEE.

Kaj

1.

2.

3.

4.

5.

Pepijn

  1. K. Hatazaki, M. Konyo, K. Isaki, S. Tadokoro and F. Takemura, "Active scope camera for urban search and rescue," 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 2007, pp. 2596-2602, doi: 10.1109/IROS.2007.4399386. --> Robotic worm with camera
  2. Y. Ambe et al., "Use of active scope camera in the Kumamoto Earthquake to investigate collapsed houses," 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Lausanne, Switzerland, 2016, pp. 21-27, doi: 10.1109/SSRR.2016.7784272. --> Use of the robotic worm with camera
  3. L. Zhao, G. Sun, W. Li and H. Zhang, "The design of telescopic universal joint for earthquake rescue robot," 2016 Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Tokyo, Japan, 2016, pp. 62-66, doi: 10.1109/ACIRS.2016.7556189. --> transmission system including the telescopic universal joint used for the snake like search and rescue robot
  4. M. Kamezaki et al., "Design of four-arm four-crawler disaster response robot OCTOPUS," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, pp. 2840-2845, doi: 10.1109/ICRA.2016.7487447. --> Four-arm four-crawler advanced disaster response robot called OCTOPUS
  5. Park, S., Oh, Y. & Hong, D. Disaster response and recovery from the perspective of robotics. Int. J. Precis. Eng. Manuf. 18, 1475–1482 (2017). https://doi.org/10.1007/s12541-017-0175-4 --> reviews robotic operations in disaster situations

Look at past projects

Universal Swarm Robotics Software Project

PRE2018 3 Group17

References

AJLabs. (2023). Infographic: How big were the earthquakes in Turkey, Syria? Earthquakes News | Al Jazeera. https://www.aljazeera.com/news/2023/2/8/infographic-how-big-were-the-earthquakes-in-turkey-syria