Embedded Motion Control 2016 Group 2

From Control Systems Technology Group
Jump to navigation Jump to search

Group Members

0779760 Ilias Aouaj
0818316 Florian Bastiaens
0784690 Menno Bouma
0775033 Anton Duys
0755206 Yannick Knops

Goal

The goal of the maze competition project is to create software that lets the pico robot solve a maze and drive through it fully autonomous as fast as possible. In this maze there will be certain obstacles that the robot has to overcome during the solving of the maze, for example doors, open spaces, dead ends and loops in the maze.

Initial design

Initial Idea

This is the report for the deadline of 27-04 about our initial thoughts of how we will structure the software for a autonomous maze solving robot.

Initial Idea Report

Requirements

Based on the restrictions of the maze competition and the conditions that have to be met, the following requirements are set:

  • The maze has to be solved by the robot autonomously within a given timeframe
  • The robot has to avoid collisions with the walls and other obstacles
  • The robot has to recognize doors
  • The robot cannot be idle for a certain time

Functions

To keep a well structured overview of the functions, they are divided into two categories: the basic hardware functions and the skills. The basic functions are the lowest level and they represent the hardware. The skills are combinations of basic functions to complete more difficult tasks
The basic functions are:

  • Translation using omniwheel actuators
  • Rotation using omniwheel actuators
  • Scan using the Laser Range Finder (LRF)
  • Scan distance driven using odometry

These functions can then be combined to create the following skills:

  • Drive:
The robot moves using this skill. It uses the basic functions driving straight and turning. It
also uses another skill, collision detection.
  • Collision detection/prevention:
The collision detection skill prevents the robot from hitting walls while navigating through the
maze. It provides live feedback control from the LRF by detecting the distance to the walls
and correcting the robots movement.
  • Junction recognition:
This skill is used to recognize junctions and corners in the maze. When the robot is moving
through a corridor, the presence of a junction or corner can be determined from the data of the
LRF. This data needs to be processed to make the robot aware of the junctions and corners.
  • Mapping:
This function maps the corners and junctions of the maze as nodes and corridors. The function
is essential for preventing loops while solving the maze. This skill depends on the Junction
recognition skill.
  • Localization:
This skill will locate the robot with respect to the maze. This skill will probably use a combination
of the LRF and odometry data to determine a location in the map created with the
mapping skill.
  • Recognizing doors:
As previously described, the robot should be able to open doors by beeping in front of them.
Therefore the system has to recognize a door to prevent beeping at every obstacle and thus
wasting time.

Specifications

Specifications related to the requirements are estimated in this section.

  • Two attempts are allowed within a total time of 7 minutes.
  • The jury decides if a robot bumps into a wall or obstacle. If so, the attempt is over.
  • The robot has to recognize doors. Using a sound signal, the door can be opened.
  • If the robot is idle for more then 30 seconds, the attempt is over

Components

For this project, the robot named pico will be used. The hardware that pico contains can be divided in the part below:

  • Actuator:
    • Holonomic base with omni-wheels
  • Sensors:
    • Laser Range Finder (LRF)
    • Wheel encoders(odometry)
  • Computer:
    • Intel i7
    • Running Ubuntu 14.04

Interfaces

The way the software works can be seen in the figure below.
This is the example of the care robot and it is to a large extent similar to this project.