PRE2015 3 Groep1

From Control Systems Technology Group
Revision as of 12:19, 27 March 2016 by S137956 (talk | contribs)
Jump to navigation Jump to search

Group members

  • Indy Hoeks - 0911750
  • Aaron Steinbusch - 0903892
  • Valery Visser - 0847109
  • Goos Wetzer - 0902160
  • Viktor van Wijk - 0905890
  • René Zaal - 0810911


Introduction

In the Netherlands only 100 million per year is spend in the construction industry on vandalism and criminality. Companies are bankrupted by the thefts occurring on building sites. To prevent these thefts nowadays building corporations install stationary cameras. Those cameras themselves are very expensive and their application is cost intensive. These cameras must be positioned multiple times, because of the changing building sites. Besides, there are mostly no walls or parts the cameras can be attached to. This results in very expensive camera units, which carry the cameras on poles, or solutions where stationary cameras must be repositioned multiple times. The solution given here is a drone, which covers the whole area, has significantly less blind spots, and delivers solutions for a better recognition of the intruders and retracing the stolen goods.

A drone assisting security.This way, it is able to detect suspicious activities in corners or difficult spots. These spots would be blind spots for regular surveillance cameras. The prejudice of flying security drones is like already stated in the previous paragraph that they can cover large buildings, with less cameras. The drone can notice suspicious movements and if it does, the drone can warn security, which then can check whether there is actually something wrong. This can be done by looking at the footage the drone sends. In the meantime, the drone will follow the person or object that triggered the alarm, and record what it sees to help recognize the perpetrator, should he/she escape. If a drone gets taken down, the alarm will go off automatically. If drones are used as surveillance cameras or guards, less actual security guards will have to be hired. Therefore, the costs for the security will go down. Another prejudice is the fact the drone can be used if stationairy cameras are not an option. For example on building sites where a lot of stuff is stolen or on open areas where it is simply impossible to mount a fixed camera. The drone could also be used for secondary uses during the day: The company could use it to make pictures or videos. However, this will not be the aim of this project. A drone’s movement could also become predictable after a while. Therefore, the route the drone will take have to be completely random, but it should not be completely random because this could lead to situations where there are a lot of drones in one area and none in another area, which makes other areas vulnerable. Using a path that looks random will prevent thieves from predicting how long the drone is away or where it will be at a given moment. The user can select points where the drone should check. Those points will correspondent with rooms, hallways, or important objects. Those properties will be elaborated in the next paragraphs. Showing a new solution for building companies and security companies, with all properties of the system clearly and elaborately discussed and a recommendation for the changable aspects of the drone.

Scenario

To show the importance of our system, there is a scenario made.

Friday 14th February 2020 A couple of weeks back, the Rijksmuseum in Amsterdam was the first large institution that implemented drones to guard the building. The decision to invest in flying cameras was made because of the increasing number of burglaries in museums around the capital city. Besides this, the costs of security guards were becoming higher and higher, and a change was needed. The patrolling security guards have been fully replaced by the flying cameras. These drones can photograph and film the environment, and chase a possible suspect. If they encounter something unusual (moving objects or a change in the environment) they send out a signal to the control room. The cause and severity of this unusual situation is then evaluated by a security guard in the control room.

On that particular evening, it is raining like it hasn’t rained in months. The newly installed drones are monitoring the hallways and exposition rooms as usual. After a couple of hours patrolling, one of the drones detects a small object that hasn’t been detected in previous rounds. The head of security is notified and looks at the footage sent from the robot. The object moved very fast and disappeared through a hole in the wall. Unless the Russians are experimenting with spying rodents, it is most likely an innocent rat. If the security guard wasn’t present for the determination of the threat, the drone would have activated the alarm for a rat, which is of course not desired behavior. After a couple more rounds, one of the drones detects a slightly opened door. It notifies the guard in the control room he has to start looking at the footage, while it moves closer to the door. Again, something small appears, but this time it stops moving in the middle of the hallway. Before the guard can determine what the object is, the screen turns black and the drone stops sending out its active-signal. It is at this point the guard knows the drone has been shut down, if not completely destroyed. He immediately sends another drone to the location and sees smoke and human-sized objects moving around it. The alarm is immediately sounded and the police is notified. Because of the smoke, it seems like the intruders haven’t noticed the second drone yet. This is why the guard commands the drone to follow them silently and stay at a distance. At one point, they are busy taking down some of the paintings and the drone finds a good moment to try and take pictures of the intruders’ faces. One of them quickly turns away his head, while the other one didn’t react as fast as his companion. Together with the face recognition system of the Dutch government, a name is quickly linked to this face. The drone then gets hit with an object and bumps into a wall. Because it is well protected against this violence, it is able to correct itself and gain some distance from the intruders. At this point, they know they have been spotted and decide to quickly leave the building. The drone follows them at a safe distance to the emergency exit, but has already locked it. They then smash a window and climb out of it. Normally, the drone will not follow suspects outside the building where it’s installed, but since the police has almost arrived, the guard commands the robot to follow them. As soon as they split up, the drone recognizes the clothes of the intruder it hasn’t photographed properly. It decides to follow him, since the other one is known already. Due to the GPS tracker in the drone, the police is able to follow him.

Focus

Assumptions

The problem which is focused on is theft on building suites when those are supposed to be abandoned. This means at night time or weekends / vacations. These building suites are surrounded by fences, but still intruders try to break in quite often. The value of the goods located at those building sites are surprisingly high, especially the specialized tools. This is highly disadvantageous for the building companies. Therefore they try to protect their goods with the stationary cameras named before. But their reach and coverage is not enough to stop all intruders. Still there are valuable goods stolen because of mazes in the security of the building sites. Another problem is vandalism like graffiti on those building sites. Cleaning of this graffiti is expensive, especially when the constructions are this new. The problem which must be solved is to cover the continuously changing building sites, to prevent theft or vandalism by intruders. Some assumptions have been made about the situations and the intruders.

- The intruders have breached the normal fences surrounding the building site, and will therefore always enter through these breaches in the fences.

- The intruders are able to hide underneath or behind obstacles.


Stakeholders

Stakeholder have an interest in the development of a certain technology, but that does not necessarily mean that they can influence the development of the technology. The first group of stakeholders are people that live close by an area that is being controlled by drones. These people might be inconvenienced by the noise the drone might make. On the other side, these people might feel more secure because these drones are patrolling an area close by. Security guards as we know them now are also important stakeholders because the these security drone will partly replace regular security guards. These security guards would become unemployed because of this technology. Another stakeholder would be an insurance company. Less break ins and especially less unsolved break-ins will lead to a more optimal situation for the insurance companies. Furthermore any footage of the drones can clear situations which involve fraud by employees or anything. These will all be caught on tape when the drone is working.

Users and their needs

Primary

There are a lot of users profiting from this system. This system will, like we already mentioned, be used as addition to the security of a site. The primary user of this system will be the security manager, which is located in a control room and responding to all alarms or messages the drones will send. This control room could either be in the building itself, like musea or military buildings which need extreme surveillance, and where it is essentially to react within seconds on site. Or this control room could be in a strategic place, and be able to manage multiple buildings or sites at the same time. Either way, the security is the primary user of this system, because he interacts directly with it, and is the person responding to it. Those primary users will think the system is useful because it gives warnings at detected movements or displacements. The system will detect more small changes than a person could, and therefore help the security manager to make less mistakes, or overlooked clues.

The security guards need the drone to be easy to use. The drone must be able to give a clear view of the area where movement is detected in order make sure that the security guard with overview can make proper decisions. The guard also needs to be trained in how to work with these machines so they know the skills and limitations. For the specific implementation of the drones, lots of tests needs to be done such as how many drones can be monitored by one guard, and what are the tools the drones can use to stop the burglar without doing harm.

Secondary

The secondary users are the security companies. Because their security managers make less mistakes, they function better and will provide better surveillance. Furthermore the system will be less expensive. Therefore, less manpower is needed this way and there will be less installation costs, because you don’t have to install and implement more complicated systems like hidden camera’s. Another secondary user is the company or owner which hires the services of a security company using those drones. They will profit greatly by better surveillance, because of the previous named reasons. Even if the burglars succeed to break in, the drone will try to take pictures of the suspects, and to lock them in. By these pictures the persons will be tracked down sooner and this will be an amiable aspect of the drone for everyone.

The most obvious benefit for the companies is the decrease in security costs: Once the system is up and running they will need significantly less employees. The second benefit is the quality improvement of the security. Chances that burglars are detected are higher and because of that the amount of stolen goods will decrease. The last and very important benefit is the improving of the safety of the employees. They will not come in contact with the burglars anymore and that is a very important for the image of that company. More musea and contractors will hire drone security companies as a result of that.

Tertiary

A tertiary user will be the society. By helping to induce thefts and insurance costs. Other tertiary users will be the insurance companies. Less break ins and especially less unsolved break-ins will lead to a more optimal situation for the insurance companies. Furthermore any footage of the drones can clear situations which involve fraud by employees or anything. These will all be caught on tape when the drone is working. The last tertiary user will be the police and or the state. Those will profit especially from the pictures the drone takes from burglars. Those will be very helpful for the police in catching the guys and completing the investigation.

The insurance companies will benefit for the decreasing amount of break-ins, and finally the society will have an emerged scene of safety when they are in a private controlled area. Finally, if the companies have reduced costs for the security of their wares, they can decrease the selling price or increase the quality of their product. Once again this will be favorable for the society.

Technical Aspects

State of the art - types of drones

Needless to say, the different types of UAVs can be implemented using different technologies. A drone is a type of Unmanned Aerial Vehicle (UAV). As the name implies, it is a vehicle that can operate in the air, without any person operating it in the vehicle itself. There are two types of UAVs: Remotely Piloted Vehicles (RPVs): these are UAVs that are remotely controlled by its operator from a distance. Because of this, the person who controls the airplane makes the decision how the vehicle behaves. On the other hand, we have a drone. It is an unmanned vehicle that operates almost completely autonomous; The drone gets a target from a controller, and then performs the actions completely autonomously.

Micro- and mini-UAVs

These UAVs are the smallest type of them all. They can only fly up to a maximum of 300 metres and are about the size of an average adult hand. Because they are so small, they can maneuver in smaller and more complex areas than all the other types of UAVs. These are especially designed for urban environments and housings.

Tactical UAVs

These fly up to a height of between 3 kilometres and 8 kilometres and can communicate and be operated over a distance of 3000 kilometres and can function for a maximum period of 40 hours. These type of UAVs are used by military force, and can even be equipped with missiles.

Strategic UAV

These can fly up to a maximum of 20 kilometers, have a flight period of about 30 hours. These type of drones are also used by military force.

Floaters

The main piece of technology consists of the equipped camera and the rest is just a balloon with some propellers to keep or place it in position. Except for the camera, this type of drone has not advanced much in the past decades. Due to the balloon based concept, these drones are stable, inexpensive, inaudible, energy efficient, durable, can cover huge tracts of land, but must be tethered and sometimes be reeled in when stronger winds occur.

Planes

These are the most used type of drones in governmental and military parties. For example, the MQ-9 Reaper keeps the borders of the UK in check. As far as half a century ago, the military used drones of this kind for reconnaissance. Nowadays the kinds of drones we are looking for when it comes to surveying large areas, are of the plane persuasion. These planes fly at several kilometers high and have special cameras onboard for making sharp, detailed images from a large distance. They are suited for patrolling large areas (they are even deployed for forests and national borders) and can chase targets through open areas. They will however quickly lose a target inside a building since they are not able to turn quickly enough to navigate inside buildings.

Quadcopters and octocopters

There is but a small difference between the two, octocopters are a bit more stable and are more redundant, most octocopters can land safely when one of the propellers breaks. These types of drones have ruled the consumer market lately and are rapidly becoming more affordable. These drones are often incapable of flying very high or fast, but are exceptionally suited for usage inside buildings. Because they are airborne, they can easily navigate stairs and blockages that would stem most other robots in their navigation. Their ability to change direction quickly and make precise movements is helpful in quickly and safely navigating the corridors of a building. These type of drones are obviously the best choice for indoor surveillance.

state of the art - sound

A drone for our use must be as silent as possible, otherwise you can hear it approaching. While the technology for drones is rapidly evolving, physics demands certain limits in their use. One of the things that determines the efficiency of a patrolling drone is the sound it produces. After all, if a perpetrator does not hear the drone, the chance that he/she gets caught increases drastically. While the possibilities for indoor drones are limited in type and size, for outdoor applications such as industrial sites and estates the possibilities are unbounded. The general rule is: the bigger the propellers, the lower the tonal distribution. Often the sound pressure produced is similar if not the same, but at lower tones in the sound spectrum, the noise quickly becomes inaudible at a reasonable distance. For inside applications the most quiet applications are balloon based, but those solutions are not quick enough for keeping track of a perpetrator. This means that the largest possible quadro- or octocopter becomes the design for indoors. Since there are no size constraints for outdoors, the easiest solution available is having a large durable drone patrolling high in the sky.

state of the art - Equipment

First of all a dual camera with a heat sensor and a normal cameras is needed. Thermal cameras alone do not seem to be very useful for identification. This means a second camera is required for identification. But there is also a third option: A two in one camera. This is a camera that has both a thermal camera and a regular camera. A camera that would be very useful for this application is the Mini Dual-Sensor Camera Module for UAV/UGV Integration. This dual camera has a FLIR TAU 2 320x240 pixel or 640x480 pixel thermal camera and a SONY 10X Optical Zoom 530TV Line Color Camera (w/12X Digital Zoom) regular camera and it is designed for drones.

technical aspects to develop

Furthermore a drone is needed, which has the capability of switching its batteries and has a distance sensor for its navigation. Furthermore the drone needs GPS to know its location. The battery of a drone only lasts for a maximum of 45 minutes. Therefore it is useful to use a drone which can switch batteries. A system like explained in appendix A must be designed to establish this. This also means the drone must be either custom made or has the possibility of being adapted. Therefore the costs of the drone are quite high in the cost analysis. By combining these aspects and the same software the simulation uses, the drone can be finished.

Bestand:x


Ethical and Political aspects=

Ethical aspects

TOBEDONE

Political aspects

UAVs can be equipped with many kinds of technologies, such as cameras, sensors, microphones and other communicating devices. And because these vehicles have these abilities, there needs to be rules made about what is appropriate and what not when using a certain type of drone. One of these themes for the rules is privacy. For example: in what type of situations can these drones be deployed in and what not? Depending on the drones capabilities, which ways are appropriate or not appropriate to act on autonomously for the drone and its situation, it should also be clear who should be held responsible for the drones actions, if the drones acts in an inappropriate way.

Another example is from the Electronic Privacy Information Centre (EPIC). This party has called for federal agencies to regulate and control the proliferation of these machines that are used for purposes of surveillance; especially in the area of hacking drones and other UAVs. To protect drones from being hacked, EPIC came up with certain ideas such as to circumvent encryption codes within drone surveillance software and the ability to manipulate hardware to gain access to drone surveillance data.

All these types of rules and approaches should be made before any type of droid is officially released to the public. There should not only be certain rules that should hold for all different types of droids in general (like a droid should not do harm to anybody), but also specific rules for robots that have certain properties. Like for example: when a drone has a camera installed on it, it should not be able to publicly expose the footage it takes, because that would violate the aspect of someone’s privacy.

Needed expertises

As can be seen some expertise is needed to establish the drone To start there needs to be an expert in drone navigation to navigate the drone. It is expected that the drone can use a lot of the same software as the simulation uses. But still the drone needs to be assembled, and it has to be made ready to fly. Therefore we need a drone specialist or drone mechanic. The third expertise we need is a security guard to react at the drones signals. The rest of the drone is already created in the simulation.

Cost expectations

For this cost analysis a relatively simple model is used. The model consists of a square building site with some high unoverseeable objects. The model has a fence around the building site, to protect in the first case from intruders. The costs of the system depends of course on the duration of the system. For this analysis we use a time period of 1 month. The fee of a security guard is estimated around 16 euros (night duty) and the fee for an installation engineer around 12 euros per hour. (both systematically hired, no self-employed guards) Current market situation 1 For a building of 50 by 90 meters which uses 6 cameras to oversee the area around the building, the costs, including installation, is about €11.000,- euros. The cameras are €750,- each. So a total of €4500,- is spent on the cameras themselves. The cables for the cameras are very expensive, and building this network is time and cost expensive. This system is after installation integrated around the building and will stay there permanently.

What	                                Costs
Night vision cameras	                €4.500,-
installation 	                        €6.500,-
Total	                                €11000,-

Current market situation 2 An example of cameras installed in a medium sized building site 8 Cameras/Outside Motion Detectors/Loud Tannoy/Unlimited Out Of Hrs Monitoring £180 p/w This system has only 4 cameras and those are only night time cameras. Thus in weekends, the building site is still not fully protected. There is no security guard reviewing this system and the cameras are quite simple and have a small range. This way the building site is minimally secured. Therefore it is assumed, these simple systems are not a real competitor for our system.

What	                                Costs
Night vision cameras	                €920,-
Contract with alarm receiving station	€32,92 
Total	                                €952,92

Current market situation 3 In the current situation, there are at least 5 stationary cameras needed. Night cameras which can see for at least 20 meters are around 750 euro. So only the cameras would be 750 euros. The prejudice of these pricey cameras is they can see at day too. Those cameras are moved a lot and will be handled often. Therefore the prediction is that they will last for only a year. In one month 312,50 will be spend on these cameras. The installation costs are quite expensive too. Installation of a single camera is estimated on 30 minutes. Connecting the total in the main system would take at least an hour too. Furthermore, these cameras cannot fly. And a construction site does not have many objects to attach the cameras to. So another 30 minutes is required to make a construction of poles or something to attach the camera to. This would lead to a 6 hour installation procedure. The construction site changes continually. The corner cameras will be stationed all day long in the same spot. But the middle camera, needs to be moved about every week, to obtain optimal situations. Therefore every week 1 hour installation should be required for a secure situation Every night a security guard is needed to control the cameras. A security guard works from about 10 o’clock in the evening to 5 in the morning. The construction builders start early so this is why the security guard is dismissed this early. But it is still a night of 7 hours with a fee of 30 euro per hour. So this will cost 210 per night. 6300 per month.

What	                                Costs
Night vision cameras	                €312,50
6 hour installation 	                €72,-
Security guard whole month             €3360,-
1 hour installation every week	        €48,-
Total	                                €3542,50

Drone situation The drone situation uses an infrared camera. These thermal cameras are quite costly. The estimation is about €2500,-. This would of course not be the cost reduction. But it replaces all 5 night vision cameras in the current building site. It has a normal camera too, with flash, so if an intruder must be captured, it will be able to do so. These cameras are made for outdoors and will only be handled by the drone. Because of their careful handling the expectation will be that they can last for at least 2 years of employment. Therefore they will cost 104,16 euros a month. A battery replacing system is included in the drone, because a drones battery only lasts for about 45 minutes. Such batteries take about 1,5 hour to get fully loaded again, so the drone requires 3 batteries and the battery changing system. The total of the changing/charging system and batteries costs about 430 (3 times 105 for the battery and 40 for the docking system (…)75 for the system which plugs the batteries in and out, which has to be made). The batteries will last for about a year so 535,83 euros must be paid every month. The installation costs would be way cheaper. The docking station must be placed somewhere in the construction site and the main points to navigate to must be installed. This would only take 1 hour and no intermediate reinstallation in the whole period. Furthermore the security guard can overview 4 or 5 construction building sites in the same time. This would reduce the security costs to 1/5 of its original costs The drone is an extra cost in this model. But the drone lasts longer than one month and can be reused. If the price of the drone is estimated on about 4000 euros, and the drone is estimated to last for 3 years. In one month about 110 euro must be reserved for the drone’s costs.

What	                             Costs
Thermal camera	                     €104,16
6 hour installation 	             €12,-
Security guard whole month          €672,-
Drone	                             €110,-
batteries            	             €35,83
Total	                             €933,99

Besides the material and fee costs, less intruders will be able to escape the security. Therefore there will also be a cost reduction in these things. This analysis presents a way cheaper and definitely more valuable detection versus the current situation.

Test Results

TOBEDONE

Considerations

Some concerns have to be made when implementing this system First of all the visibility of the drone. There are multiple pros and cons in making the drone easy detectable for everyone. First of all by making the drone visible, it may have an dissuasive effect. If it is thought the place is well protected, intruders or vandalists will be less inclined in entering the place. Especially those who commit minor violations like graffiti will watch out for those kinds of places. Especially because the drone with camera will be accompanied by clear informative signs on the fences which inform passer-by’s there is camera observation and security drones. But in contrary the clearly visible drone will be easier to spot and therefore a person may be able to hide in time. Especially when the drone is also clearly audible, they can hide before being in their visual field. By that the drone is also easier to take down, because localization is easier. But if the drone is taken down, there will be automatically send to the guard. So in this situation the intruder will still be caught hopefully. Another consideration is the interaction with the intruder The drone can follow the suspect as silent as possible, so they will take their time to get everything and this buys the police some time to arrive. But the other possibility is to turn on a loud noise or lights, which scares off the intruder. The best possibility will be the combination. If the intruder is already with the valuable goods, the drone should stay silent for the police to arrive. But if the intruder hasn’t reached the valuable goods, and the loud sound goes off, this will probably scare off the intruder. Which hopefully leaves without taking anything. This won’t get the intruder caught, but it will prevent from theft.

Recommendations

TOBEDONE

Planning

Week 1: (brainstorm)

  • Introduction to the course
  • Come up with ideas for the project
  • Choose the best idea
  • Make a first presentation

Week 2: (final idea)

  • Literature research
  • Process feedback
  • Make a final idea presentation

Week 3: (research)

  • Make a proper planning
  • Research the considerations
    • Safety (Valery)
    • Privacy (Aaron)
    • Decision making (Indy)
    • Violence (Valery)
    • Applicability indoors (Viktor)
  • Derive requirements for the design
  • Start with building the simulation engine (René)

Week 4: (start designing)

Week 5: (finish design)

Week 6: (testing)

Week 7 (improving)

  • Improve the design
  • Document the process
  • Finish the report

Week 8: (final presentation)

  • Peer review
  • Make the final presentation