PRE2015 3 Groep4
This is the wiki page of Group IV of USE Project: Robots Everywhere.
Our idea is a smart bedroom that helps you wake up fall asleep. This is done by simulating sunrise and sunset respectively.
To simulate the sunrise and sunset as best as possible, a software has control of the light intensity, temperature and sound level in the room. This "robot" also keeps track of how deep the person is sleeping: this is done because waking up while in a REM sleep is much more comfortable than waking up while in a deep sleep.
Group Members
- 0888465 - Thomas Bardoel
- 0942166 - Wesley van den Broek
- 0887435 - Jeroen Ermers
- 0888864 - Luuk Ladegaard
- 0887879 - Roel Montree
- 0835870 - Jeroen Verbakel
Smart Bedroom
Our idea is the smart bedroom. This is a bedroom which will be controlled by a so-called smart alarm. The smart alarm will analyze the person in the room when he is awake and when he sleeps. The smart alarm can also control the lights and blinds in the bedroom. The purpose of a smart alarm is to let the person sleep as well as possible. This alarm can be very useful for people with insomnia.
A few ways to let the person sleep as well as possible are helping the person to get asleep, waking the person after a full sleep cycle and waking the person with special light which will be experienced as a sunrise. The smart alarm has an integrated tool which can measure the heartbeat, what gives information about the sleeping process. The person could also give feedback. For example, he can rate his experience after every night, or he can only report the alarm if he experienced something unpleasantly. The smart alarm will use this feedback the next nights to improve the sleep experience of the person.
The smart bedroom will be integrated on your smartphone. You can set the wake up time, or wake up interval, easily on your smartphone. It communicates with the server of the smart bedroom. This server controls the blinds, lights, sound and temperature in your room. When the person is waking up, he can give his rating at his smartphone. But he can also see his sleep pattern on his smartphone of all nights.
A method which is very precise is measuring the heartbeat with the aid of infrared radiation. But this method is still in his development and will be very expensive. So we'll use an other method, namely sound recognition. This method measures the breath and translate this to a heartbeat. But a footnote is, that this method has to be calibrated over some nights to get a good estimate. And sleeping together can also be a problem with this method. But this method is much cheaper and can be used nowadays. Maybe in the future we could use infrared.
Scenario
Here's a short story to illustrate our idea:
John is a student at the university of technology Eindhoven. He has sleeping problems so he decided to invest in a smart bedroom. When John goes to sleep, he sets the wake up time to anywhere between 7am and 7:30am. Now it is time to sleep. The bracelet that John is wearing is measuring the heartbeat and sends the data to his smartphone. Also, the smartphone check his movements to see in what phase of the sleeping cycle he is. Around 7am, the smart bedroom notices that John almost completed a sleep cycle. Since John will have completed this sleep cycle during the wake up interval, his smartphone will send instructions to the server of the smart bedroom. The smart bedroom will allow the windows to let more sunlight pass through and will also raise the temperature. When getting closer to finishing the sleep cycle, more and more sunlight will go through the window and the temperature will keep going up. This will allow a much more natural wake up than usual. The sleep cycle has ended but the smart bedroom notices that John is still asleep even though all sunlight goes through the window and the temperature is raised to the maximum allowable level, so it decides to play a relaxing sound which builds up in volume to force a wake up. Finally John wakes up at 7:20 am and he is not as sleepy us usual. He is able to get out of bed without any problem and is ready for his day at the university. John also rates his sleeping experience and the alarm will use this information for the next night.
Use aspects
The smart bedroom is a dream for many people. Here, the USE-aspects of the smart bedroom will be discussed discussed.
The user will benefit from the smart bedroom because this integrates his blinds and lighting into his smartphone. This is the first step towards home automation. By crossing the barrier of combining your living space with your mobile devices, it becomes very easy to expand on this.
The smart bedroom helps to battle tiredness, and therefor stress, which can also be considered a benefit for the society. Besides tackling tiredness in general, the smart bedroom is great for people with insomnia.
Due to the integrated lighting and blinds in the bedroom, it becomes possible to sleep during the day. This possibly opens up all kinds of new lifestyles, such as working in multiple shifts during 24 hours, decreasing the morning and evening commute, by spreading the starting hours throughout the day.
A good night's rest greatly improves productivity, which is good for both society and enterprise. Through the smart bedroom, we can open a whole new market in home automation, enabling many new jobs, startup companies and other benefits to enterprise. If you once again consider working night shifts, you'll see this is beneficial to enterprise as well, in decreasing the size of offices, for not everyone will work there at once.
Users
Primary users:
- The person who sleeps in the smart bedroom
Secondary users:
- Other users sleeping in the smart bedroom
- People living with the primary user
Tertiary users:
- Scientists (data collection on sleep)
- Employers (more productive personnel)
- Engineers (that install and service the smart bedroom)
- Medical personnel (for people that need monitoring when sleeping)
User needs
Primary users
The person who sleeps in the smart bedroom