PRE2019 3 Group3: Difference between revisions
TUe\s142236 (talk | contribs) |
TUe\s142236 (talk | contribs) |
||
Line 494: | Line 494: | ||
Losses due to dust, snow... | Losses due to dust, snow... | ||
Temperature losses | ====Temperature losses==== | ||
A higher temperature reduces the efficiency of the solar panels. [https://scienceline.ucsb.edu/getkey.php?key=2668] In contrast a lower temperature will increase the efficiency of the solar panel. The formula for calculating the loss of temperature is: TL = TC * (TT - MT) [https://www.teachengineering.org/content/cub_/lessons/cub_pveff/Attachments/cub_pveff_lesson02_fundamentalsarticle_v6_tedl_dwc.pdf] with: | A higher temperature reduces the efficiency of the solar panels. [https://scienceline.ucsb.edu/getkey.php?key=2668] In contrast a lower temperature will increase the efficiency of the solar panel. The formula for calculating the loss of temperature is: TL = TC * (TT - MT) [https://www.teachengineering.org/content/cub_/lessons/cub_pveff/Attachments/cub_pveff_lesson02_fundamentalsarticle_v6_tedl_dwc.pdf] with: | ||
TL = temperature losses | TL = temperature losses | ||
Line 504: | Line 504: | ||
Do solar panels work at -70 degrees? [https://www.sciencedirect.com/science/article/pii/S0927024802002581] | Do solar panels work at -70 degrees? [https://www.sciencedirect.com/science/article/pii/S0927024802002581] | ||
Shadings | ====Shadings==== | ||
Most clouds on mars exist of ice water and clouds are also formed during dust storms. These clouds can decrease the brightness of the sun up to 40%. [https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Ice_clouds_put_Mars_in_the_shade] As such we will assume the average of performance decrease to be around 20%. | Most clouds on mars exist of ice water and clouds are also formed during dust storms. These clouds can decrease the brightness of the sun up to 40%. [https://www.esa.int/Science_Exploration/Space_Science/Mars_Express/Ice_clouds_put_Mars_in_the_shade] As such we will assume the average of performance decrease to be around 20%. | ||
Dust | ====Dust==== | ||
Dust can be a large problem for the energy output of the solar panels. We can assume that at the start of every trip the solar panels are cleaned and the loss due to dust is 0%. However, since Mars has a lot of dust on its surface and can have a lot of dust in the air after dust storm/ dust devils it can stick to the surface of the solar panel and dramatically decrease the energy generator to 30%. ["Self-Cleaning Solar Panels Maximize Efficiency".] | Dust can be a large problem for the energy output of the solar panels. We can assume that at the start of every trip the solar panels are cleaned and the loss due to dust is 0%. However, since Mars has a lot of dust on its surface and can have a lot of dust in the air after dust storm/ dust devils it can stick to the surface of the solar panel and dramatically decrease the energy generator to 30%. ["Self-Cleaning Solar Panels Maximize Efficiency".] | ||
To increase the performance of the solar panel during or after sandstorms, an Arduino Uno microcontroller can be used to track the power generation and cleans the photovoltaic surface when it drops to 50% from its rate value. It then uses a wiping tool to clean the surface of the solar panels. This method was proposed for solar panels in Iraq since dust storms are quite normal there. [https://www.researchgate.net/publication/325548144_Smart_system_for_dust_detecting_and_removing_from_solar_cells] For the water transport robot it could be wise to set the bound for cleaning the solar panel lower such that it cleans the panels at a lower drop. We will assume that it is possible to have the module clean the solar panels when its rate value drops to 15%. This would of course mean that more wiping fluid is needed. | To increase the performance of the solar panel during or after sandstorms, an Arduino Uno microcontroller can be used to track the power generation and cleans the photovoltaic surface when it drops to 50% from its rate value. It then uses a wiping tool to clean the surface of the solar panels. This method was proposed for solar panels in Iraq since dust storms are quite normal there. [https://www.researchgate.net/publication/325548144_Smart_system_for_dust_detecting_and_removing_from_solar_cells] For the water transport robot it could be wise to set the bound for cleaning the solar panel lower such that it cleans the panels at a lower drop. We will assume that it is possible to have the module clean the solar panels when its rate value drops to 15%. This would of course mean that more wiping fluid is needed. | ||
Line 513: | Line 513: | ||
If both methods described above are implemented, dust will most likely not exceed a loss of 15% and have an average loss of about 8%. | If both methods described above are implemented, dust will most likely not exceed a loss of 15% and have an average loss of about 8%. | ||
Other losses | ====Other losses==== | ||
Since it is difficult to determine what the other losses will be we will assume the average for each of he remaining losses [https://photovoltaic-software.com/principle-ressources/how-calculate-solar-energy-power-pv-systems] : Inverter losses (7%), DC cables losses (2%), AC cables losses (2%) and losses at weak radiation (5%) which combined give a loss of 16%. | Since it is difficult to determine what the other losses will be we will assume the average for each of he remaining losses [https://photovoltaic-software.com/principle-ressources/how-calculate-solar-energy-power-pv-systems] : Inverter losses (7%), DC cables losses (2%), AC cables losses (2%) and losses at weak radiation (5%) which combined give a loss of 16%. | ||
Revision as of 15:34, 16 March 2020
General information
Information about the groupmembers and the logbooks each week can be found here.
A full list of all the references used can be found here.
Problem statement
Setting
For years now, new initiatives to colonize Mars kept popping up all over the world. Examples include Mars One [1] and SpaceX [2]. It still seems far away, but when these plans eventually become reality, Mars will likely be covered with multiple colonies within the near future. While some companies and/or countries might try to work together to build one colony, others might end up establishing their own. This behaviour can also be seen in the construction of space stations right now. While the ISS is a collaboration between multiple space agencies, China is building their own space station in the form of the Tiangong program [3]. Because of political distrust, China is not allowed to collaborate on the ISS [4]. This distrust will probably continue when the time of Mars colonies is here. Some companies also might choose to build their own colony, like Bigelow Aerospace is doing with the Genesis program [5] when looking at space stations.
When these colonies are established, they will need resources to continue and expand. Delivering these resources from earth through rockets is time consuming and very expensive, so gathering as much of these materials as possible on Mars would be a better option. Ideally, these colonies would be build on locations that offer one or more of these resources, like water, building materials or minerals like copper and iron, at their site. However, these resources will eventually run out at the colony site and there is a possibility that not every resource is available at one location. This also could be a reason for having multiple colonies or a separate mining site. In this situation, trading or transporting resources between other colonies or mining sites becomes a solution. Just like countries here on earth trade with other countries to get their hands on things they can’t get in their own country, like for example oil, colonies on Mars could trade with each other to get easy access to the resources they need.
In order to build a colony, different factors to choose a certain spot for a colony have to be examined. To look at the different factors that determine what a good place to build a colony is, two different situations will be looked at. Firstly, there should be a good landing spot for the crew to arrive on Mars. Secondly, there should be a good location to actually start the colony. Ideally, these two locations should be on the same sport or really close to each other. For now, let’s assume the colony will be build on or around the landing spot, since too great a distance between them will create problems for travel. For a good landing spot, the landing area should be as flat as possible. According to [6] It also needs to be clear of rocks and boulders, since this would make landing dangerous and the landing area should not be too soft. It states that Mars has areas where the dust is several meters high, which is unfitted for landing. For building a colony, this also seems important. Building will be hard on areas that are too soft, since this would require better foundations. Non-flat and rocky areas can be not ideal for building, but can be worked around. [7] States that a good landing spot should be as close as possible to the equator, because this ensures that the solar arrays of the lander can deliver enough power at all times of the year and the temperature is high enough for the lander to stay warm. This factor is situational but can be really helpful when the colony will rely on solar power for generating energy. This will also decrease the power needs for warming the colony. Both previously mentioned articles say that the altitude of the area is also an important aspect. According to these articles, a lower altitude is better for landing. This means that there is more atmosphere above the land to slow down and steer for a good landing. [8] talks about food production which is another important aspect. At first the colonizers can live from provisions sent with them, but in order for them to live on mars indefinitely they have to grow crops. In order to grow crops there needs to be usable soil at the landing site and there needs to be enough water. Water is not only important for food production, but also for drinking or even as a fuel by turning it into hydrogen. Currently, the best way to get water on Mars is by gathering ice that is located underneath the surface on Mars. Ideally, this ice will be located as close to the surface as possible, since this makes it as easy as possible to mine. The image [9] below shows the depth of the ice on the surface of Mars.
As shown on the map, the ideal location for digging up ice according to NASA is noted with the white box. This is fairly close to the north pole however, which contradicts with the earlier mentioned preference of building the colony as close as possible to the equator. This already shows that there is not one ideal location to build a colony. Different countries/companies might choose a different location for their colony. Now, let’s assume some choose to build their colony close to the north pole, in the white boxed area, because they think water is more important than other factors. Now, other countries or companies choose to build their colony close to the equator, because they know other colonies can already easily mine water. They now value the better temperatures and sunlight more because they know they can buy and/or trade with the other colonies for water. This means that the citizens of the colony need a way of transporting water from colony to colony. Another possible option could be that a company chooses to build a colony close to the equator and a separate mining site for water. This way, they have the better temperatures and sunlight for solar power at their living area, the colony, and have a way to gather water on Mars. However, this again, brings the need for a transportation system between the colony and the mining site.
Problem
In order to trade or transport water from colony to and from another colony/mining site a way of transportation between the colonies is needed. Going out themselves is dangerous for the colony citizens. Radiation, low temperatures, dust storms and a toxic atmosphere [10] [11] [12] are all reasons to search for another solution than letting humans drive from colony to colony in person. Because of this, the colonies are in need of a transport system that does not require the citizens to go out themselves.
Solutions
There are a few solutions for this:
Option 1: Building a transportation conveyor tube.
Option 2: Building a protected manned transportation vehicle. This vehicle must be protecting the people inside from radiation and temperatures.
Option 3: Building a remote-controlled unmanned transport vehicle with cameras attached which will be controlled by someone in the colony. There must be someone controlling the vehicle.
Option 4: Building a transport robot that would be able to autonomously deliver water from the one colony to the other.
Comparing solutions
We are going to dismiss options by comparing the most important properties needed to solve the problem:
Option 1 can only transport from two static locations, while option 2, 3 & 4 are more dynamic in this aspect. Because of uncertainty of the location of the colonies in the current development it might be best to leave this one out. Also, with the big distance between colonies this could be an extremely big project that is way too expensive and would still need human help in the dangerous environment to build.
The difference between option 2 versus 3 & 4 is that if we are sending a human on the transportation vehicle or not. As stated before sending a human on the vehicle would be dangerous and would require the vehicle to be of much higher quality to ensure safety of the human inside, which is most likely much more expensive solution than option 3 & 4. Also the added weight of the drivers and extra materials in order to protect the drivers will increase energy consumption of the vehicle.
Now we are left with a remote-controlled transportation vehicle versus an autonomous transportation vehicle. The remote-controlled vehicle will be controlled by a human. This means that the human is always aware of its position and situation allowing to help with overcoming obstacles. This means that decision making will be in human hands which the users might prefer over handing the driving over to an AI. However, the remote-controlled vehicle requires a driver. Since distances could be pretty far in between the colonies/mining sites it would be a better option for the users since they don’t have to spend that much time driving and/or routing.
Because the user will most likely prefer a transportation system that does not require a driver, we have decided to go for solution option 4: Building a transport robot that would be able to autonomously deliver water from the one colony to the other. This robot will autonomously drive to a colony or mining site and will bring back water for the colony.
Alternative
There is one simple alternative namely, using no transport at all. This is the case if every colony can obtain enough water, such that no transport is needed. The 2 most likely ways any colonies will have enough water will be whether it is near a water source or not. There are 2 methods that do not rely on location based water obtaining techniques namely recycling and obtaining water from the air.
Water can almost perfectly be recycled. However, this is only possible when recycling human waste water, like urine and washing water, not when the water is used for growing crops or industrial usage.[13]
Water can also be obtained from the air using humidifiers. One example is the Water Vapor Adsorption Reactor(WAVAR), an industrial-level dehumidifier, that could extract water from the atmosphere. This should be able to obtain some amount of water a day but this would not be enough when also water is needed for crops and such. This is also the reason it is not the first choice between getting water from the glaciers or soil. However, the WAVAR is a very energy efficient method, so it might still be useful under certain conditions.[14]
Using both techniques a colony would be able to sustain humans, but would not have enough water to also sustain water for growing crops and industrial use. Industrial use includes creating rocket fuel and usage for fabricating, processing, washing, diluting, cooling, or transporting a product. Large amounts of water are used mostly to produce food, paper, and chemicals.[15]
Robot overview
Objective questions
- What kind of transportation method will the transportation robot use?
- How will the robot obtain energy for transportation?
- What relevant information from the environment does the transportation robot need to percept to drive successfully from one colony to another?
- What kind of protection does the water need while being transported?
- How will the robot determine its location?
- How is the robot going to define a path?
- How will the robot deal with complex situations? (Think of getting stuck, etc)
- What kind of distance does the robot have to travel? How long will this take the robot?
RPC list
Requirements | Preferences | Constraints |
---|---|---|
The robot has to be able to percept the environment accurately. | The robot has to be able to move around the martian surface efficiently. | The angle on which the robot can drive uphill |
The robot must have the capacity to carry enough water | The robot must be able to go as fast as possible. | The maximum mass |
The robot must be resistant to radiation, low temperatures, dust storms and a toxic atmosphere and needs to be able to protect the water from this as well | ||
The robot has to be able to find a path across a known Martian surface with the possibility of alterations. |
What does the robot already know?
The robot already knows the location of the colonies/mining sites and already knows the terrain of Mars in between. Unexpected obstacles such as boulders, duststorms or cave-ins are not known however.
Scenario and assumptions
To research different possibilities for power storage and power supply, it is first needed to know how much power the robot needs. For this a quantitative description of the situation is needed. Since this situation is still an idea and not the reality, this will consist mostly of assumptions. To start, it is assumed that there are 50 people living in the colony around the equator that needs water. When looking at the water map displayed in the setting section at the beginning of the wiki, it can be said the equator is about ⅛ of the Martian circumference away from the white boxed section which is about 2500 kilometers. So, the colonies are 2500 kilometers apart. The goal is to let the robot drive at a speed of at least 10 kilometer per hour, which will result at a travel time of 500 hours or about 21 days to drive from colony to colony and back. We also assume the transport robot gets the maintenance and cleaning it should need, like for example cleaning the solar panels of dust, at each colony.
In order to know how much water the robot needs to transport, the water usage of the colony needs to be established. Every person in the colony will use about 50 liters of water per day [16] for drinking, washing etc. From these 50 liters, it is assumed that 80% can be recycled at the colony [17]. However, water is also needed for other things. If the colony is growing its own food, water is needed to grow crops. A human eats around 2.5 - 4.6 kilograms of food per day [18]. For simplicity, it assumed that humans eat 3.5 kilograms of food per day. The water cost for food production of different types of food can be found in the graph below [19]. Since it will be likely that in this stage of the colony no animals will be on Mars, it is assumed that the only food produced on Mars is in the form of growing crops. Because of this, the average amount of water needed for 1 kilogram of food is about 1675 liters which is obtained by taking the average of the production cost of apples, maize, barley, wheat, soyabeans and rice. Here on earth, a part of the water used for hydrating the crops disappears in the earth, but on Mars, a greenhouse could extract all extra water from the soil and reuse it. Also, a part of the water inside the crops that is consumed will be turned into urine which is recycled at the colony. While based on nothing, it is assumed that 30% of the water needed for growing crops can eventually be recycled. This brings the total water cost to 1182.5 liters per day per person, which is 59125 liters for the whole colony per day. This is a lot, but it is just an assumption. It could be that a lot more of the water needed for crops could be recycled, which will bring the number down by a lot. But for now, this number is what will be worked with. Another option is that all the food is produced at the colony where the water is coming from, which will result in the need for another transport infrastructure for the food, or could be combined with the water transport. This will bring the water consumption down to 500 liters per day for the colony at the equator. This seems like a way better option, so it is assumed that food is supplied by another transport robot. This means the total amount of water that the water transport robot needs to supply is 500 liters per day.
Since 1 transport robot can be back at the colony every 21 days, and the colony needs 500 liters of water per day, it can be concluded that 1 transport robot should be able to carry at least 10.500 liters of water. While, for this project, it is assumed that this transport robot will always reach its destination, in reality, it could always go wrong. The transport robot could get stuck, lost in a dust storm or just get a malfunction. For this reason, it is assumed that 4 of these robots will drive from and to the colony. 1 Robot will dispatch every 5¼ day and is assumed to have a capacity of 5000 liters. This means that, assuming the colony itself has storage capacity enough for more water than consumed, even if 1 robot will fail to come back, the colony always has water enough to survive. For comparison, the Mercedes Atego 1317-A 4x4 Lindner-Fischer 2017, which can be seen in the picture below [20], has a capacity of 6000 liters. This means that the transport robot needs to be around this size. This model weights about 11900 kilograms. With a full tank of water, this means it will weight about 12400 kilograms. This means that it can be assumed that the transport robot will weigh approximately the same on earth. Since the gravity on Mars is about 38% of the gravity on Earth [21] this will result in a weight of about 4712 kilograms on Mars. For calculations however, mass is used, which will not change with gravity so it still has a mass of 12400 kilograms on Mars.
Now, the last thing to do is calculate how much energy the transport robot will approximately need. The energy needed to bring the transport robot from standing still to a certain speed can be calculated with the formula stated below.
In this formula, Ek represents the kinetic energy put into the robot when it reached this speed, m represents the mass and v represents the speed. As any car on Earth, the transport robot will experience friction while moving across the surface. This friction consists of the friction created by the ground on the wheels and the air friction. The friction created by the ground on the wheels can be calculated with the formula stated below.
In this formula, Ffr represents the friction force, m represents the mass, g represents the gravitational acceleration and c represents the rolling resistance coefficient. The friction caused by the air while moving can be calculated with the formula stated below.
In this formula, Ffr represents the friction force, C represents the drag coefficient, ρ represents the air density, A represents the cross-sectional area and v represents the speed of the transport robot. Both these friction forces will bring the transport robot to a stop when the engine of the robot stops putting kinetic energy in the robot. During the trip, these forces will put work on the robot which will require the engine to put new kinetic energy in the transport robot. This work is equal to the total friction force times the distance travelled. This means, that the total energy needed to move the transport robot from one colony to another at a certain speed can approximately be calculated with the formula below.
In this formula, E represents the total energy needed and d represents the distance. Some of these variables/coefficients are unknown, assumptions are made as presented in the table below.
Variable/coefficient | Assumed value | Based on |
---|---|---|
C | 0.58 | Drag coefficient of a Jeep Wrangler TJ [22] |
A | 7.5 m^2 | Dimensions of Mercedes truck |
c | 0.06 | Value also assumed by NASA [23] |
m | 12400 kg | Mercedes truck |
d | 2500 km | Distance colony to colony |
Variable/coefficient | Known value | Based on |
---|---|---|
ρ | 0.020 kg/m^3 | Air density on surface of Mars [24] |
g | 3.711 m/s^2 | Gravitational acceleration on Mars |
Electric engines offer an efficiency of about 80% from grid to wheels [25], meaning that the energy that should be produced by the transport robot can be calculated with the formula stated below.
It is important to note that this formula does not account for everything and is just an approximation of the energy needed. A plot of the speed and the total energy needed can be found in the graph below. The noted point represents the wanted speed of 10 kilometers per hour, which is equal to 2.7778 meters per second. This speed results in a total needed energy of 8.63*10^9 Joule for driving.
Other energy needs could include keeping the water at a certain temperature. Temperatures on Mars range from -125 degrees Celsius on a cold winter day to 20 degrees Celsius on a summer day [26]. This means that for the most part, the temperature is under 0 degrees Celsius and the water will be ice. While energy could be used to keep the water under 0 always, it seems best to let the water alternate between these two states of matter, solid and liquid. If the tank is big enough to keep 5000 liters liquid water in ice state, it should not be a problem. This will cut the need to put energy in keeping the water in a certain state. Since the density of ice is 0.92 times the density of liquid water [27], the tank should be able to carry 5435 liters of ice. For simplicity, we assume the tank has to have a capacity of 5500 liters.
All in all, this means that if the transport robot moves with a speed of 10 kilometers per hour, it needs to be able to either storage at least 8.63 GJ of energy or needs to be able to, assuming it travels for 10.5 days one way, generate at least 9511.89 Joule of energy per second (9511.89 Watt). A combination of a power storage that is charged at the colony and a power supply during the trip could also be an option. The amount of battery capacity and the amount of energy production needed can be found plotted against each other in the graph below.
Plan
Milestones
Research on power storage
- How much capacity can the battery have?
- Can a battery be used at these temperatures?
Research different possibilities for power supply
Solar energy
- How does it work?
- What is the solar intensity on Mars?
- What is the best angle for the solar panels?
- How much solar panels can we put on the transport robot?
- How much energy can we produce using solar energy?
Radioisotope Thermoelectric
- How does it work?
- Is fuel for this obtainable on Mars?
- How safe is this?
- How much energy can we produce using Radioisotope Thermoelectric energy?
Comparing different energy supply methods
- Which produces the most energy?
- Which is the safest form of energy production?
- Which is the easiest to produce locally on Mars?
Think about final design
- Is only a battery enough? How much energy production is needed if we use the battery only as a buffer?
- Can we go faster than 10 km/h with the battery and energy production?
Making the presentation
Deliverables
- In-depth research of the power storage.
- In-depth research of both energy sources.
- Proper plan for power supply of the transport robot.
- Proper plan for power storage of the transport robot.
- Presentation
Who will do what?
Task | People working on it |
---|---|
Research on power storage | - Thomas (Week 5)
- Rik (Week 5) |
Research different possibilities for power supply (Solar Energy) | - Zeph (Week 5)
- Stefan (Week 5) |
Research different possibilities for power supply (Radioisotope Thermoelectric) | - Nick (Week 5)
- Finn (Week 5) |
Compare different power supply methods | - Zeph (Week 6)
- Stefan (Week 6) - Finn (Week 6) |
Think about final design | - Nick (Week 6 & 7)
- Rik (Week 6) - Thomas (Week 6) - Zeph (Week 7) - Finn (Week 7) |
Start on presentation | - Thomas (Week 7)
- Stefan (Week 7) - Rik (Week 7) |
Finishing Presentation | - Everyone (Week 8) |
Finishing Wiki | - Everyone (Week 8) |
Planning
Week | Working on | Deliverable finished at end of week | Mainly responsible for finished deliverable |
---|---|---|---|
Week 5 | - Research on power storage
- Research different possibilities for power supply |
- In-depth research of both energy sources (1) Solar Energy (2) Radioisotope Thermoelectric
- In-depth research of the power storage (3) |
- (1) Zeph & Stefan
- (2) Finn & Nick - (3) Thomas & Rik |
Week 6 | - Extra time for research on power supplies if needed
- Comparing different power supply methods - Think about final design |
\ | \ |
Week 7 | - Think about final design
- Start on presentation |
- Proper plan for power supply of the transport robot
- Proper plan for power storage of the transport robot |
- Zeph, Finn & Nick |
Week 8 | - Finishing Wiki
- Finishing Presentation |
- Presentation (Before Thursday)
- Wiki (Before Thursday) |
Everyone |
Users
Technological Difficulties
Aside from the financial aspect, there are some other difficulties in conducting a journey to Mars. The most prominent ones will be elaborated here.
Distance
Mars is the planet that is closest to earth in our solar system. However, the distance that would have to be covered if we launch a manned vessel to Mars is still significantly large. On average Mars is around 225 million km from earth, with 55 million km at its closest, occurring every 26 months. This journey would take around 150-300 days, according to [28]. This is a reasonable amount of time, but the trouble lies in fuel consumption, as a manned vessel would be larger than a unmanned vessel, due to supplies that a manned mission needs. This would lead to a large fuel consumption. However, technologies are present to cover this distance in space with a manned vessel [29].
Housing
Three other factors to take in consideration are the atmosphere, the temperatures and the storms on Mars. As for the atmosphere, oxygen could be produced using the carbon-dioxide that is present in the Martian atmosphere [30]. For example, greenhouses could be built with plants that convert CO2 into O2 or a device for converting carbon-dioxide into oxygen could be developed. The temperatures range anywhere from -125°C to +20°C [31]. These kinds of temperatures are acceptable in the building of a space colony, with good isolation and air-conditioning systems. There are also severe dust storms on Mars from time to time. This means that a rigid structure needs to be built to withstand such storms, building underground or in caves.
Supplies
Once a group of people is settled on Mars, a huge challenge will be to supply them in their needs. First of all, food is needed to keep the population alive. This could be realized by both transportation of food from earth and, ultimately, growing food on Mars. Also building materials must be transported through space. This requires new rockets that can carry heavy loads. NASA is developing these spacecrafts [32]. This means that this issue, although very cost-intensive, can be technologically overcome.
In conclusion, we can say that a colony on Mars is possible in the future, because all the technologies to realize it is there. It is only a matter of further development and major investments to make this happen. This means that there will be a need for Mars-exploring robot technologies in the future.
The main users of the robots will be a Martian space colony. This colony is non-existent today. However, the idea of a Mars-colony is widely researched right now. NASA, for example, has launched several Mars-exploration-robots in the past [33] and still does extensive research on the planet today. There is also an organization that focuses solely on the development of a human colony on Mars. This organization is called Mars One and it focuses on the selection of astronauts and the raise of funding [34]. Mars One claims that all technologies to get to Mars and to begin a colony there, are already present. Only a return mission is impossible right now, but that will not be needed if the crew of the mission will settle on Mars. This means that, in theory, a Mars colony is feasible within the coming 50 years [35]. This means that the navigation technology, that we will design, is certainly of use for this yet to be founded colony.
Other parties of interest for this technology would be organizations like NASA, ESA, Space-X, Mars One, and other space-oriented companies, as they will be the organizations that will put people on Mars.
Stakeholders
The primary users of a device that can navigate itself across a planet, in this case Mars, are the people that live on Mars. At the moment, there are no people living on Mars yet. This means we should look at the probability for a Mars-colony to be formed in the near future. Most likely the first people that are send to mars will have certain skills. This includes engineers that are in charge of repairs. They are also secondary users since they are the ones that have to repair and perform maintenance on the robot. People have always dreamed about relocating the human race to another planet, in case something would happen to planet earth. This idea generates even more interest nowadays, than it did, say, 50 years ago, with the current problem of climate change affecting the earth. Now, more than ever, people are looking for another place to live in the galaxy. One of the most prominent candidates for this migration would be Mars, because it is ‘close’ to earth in comparison to other planets. Furthermore, it is believed to have water, which is a major life source, in its soil. But are we ready to move there in the near future?
The most recent commitments to researching permanent settlement include those by public space agencies NASA, ESA, Roscosmos, ISRO and the CNSA, and those by private organizations such as SpaceX, Lockheed Martin, and Boeing.[36]
Mars One
Mars One is an organization, that certainly believes that the colonization of Mars is possible. Mars One handles the selection procedure for astronauts that want to settle on Mars in the yet to be formed space colony. It is also responsible for raising funds in order to make the mission happen. In [37] they state that the formation of a space colony, instead of a visiting mission that has to return to earth, excludes most technological and cost-intensive problems. Namely, if people want to settle on mars, no return vehicle, return propellant or the systems to produce the propellant locally are required. This decreases technological challenges and reduces costs dramatically. Furthermore, they mention that all the technologies to send people to Mars and make them survive there are already present. This means that a Mars colony is certainly feasible within the next 50 years. However, in [38] they mention that the funds to actually develop a Mars settlement mission are not present right now (1 million USD of the 1 billion USD required). On the other hand, donations and investments might rapidly increase when more research is conducted in this field, and people would get convinced that a Mars colony is feasible. Also, if the situation on earth gets worse, people might have no choice but to invest in these kinds of missions.
SpaceX
SpaceX is another organization that has made plans to colonize mars.
NASA
NASA: Moon to Mars
Space Launch System
Manufacturers
The robot will most likely be manufactured on Earth and send to Mars via spacecraft. The company in charge of manufacturing can be part of the organization colonizing Mars or different private organization that is looking to make a profit. This will most likely affect certain decisions based on what their goals are.
State of the art
Preliminary version about navigation on Mars
State of the art
In the area of navigation on mars, there are several things that have already been tried. In order to understand what has already been done in the field of navigation on Mars, we need to have a look at the most recent, still working devices that have landed on Mars. In the past there have been a lot of rovers and other devices that have landed on Mars in order to explore the planet and its surface. However, the only two landers that are still active and in contact with earth are Insight (2018) and Curiosity (2012)[39]. All the other spacecrafts that have ever been on Mars are either broken, or have lost contact with earth in another way. There is also a future rover, scheduled to launch in 2020, which is called Mars 2020. Next, Insight, Curiosity and Mars 2020 will be elaborated.
Insight
The Insight Mars lander was launched in 2018 and landed successfully on Mars. Its primary goal is to investigate the ‘inside’ of the planet. More specifically its "pulse" (seismology), "temperature" (heat flow), and "reflexes" (precision tracking) [40]. It is a stationary device, as it does not navigate itself across the surface of the planet. Instead, it measures the key characteristics of Mars from one place on the surface, with the goal to determine how small, rocky planets in our solar system have been formed. Therefore, this mars lander does not contribute to the state of the art of our project, as we will focus on the navigation across the surface. However it might still have some value, as it maps the seismological activity of Mars. This could be of importance when navigating across the surface.
Curiosity
The Curiosity Mars lander was launched in 2011 and reached Mars in 2012. It is a car-sized Mars rover that will explore the Gale crater on Mars. The rover navigates itself across the surface of Mars by itself, which makes it an interesting device to look at for our project. Furthermore, its primary goal is to investigate whether or not life was ever possible. This means that it also looks for essential life conditions like water, oxygen, sulfur, phosphor and other minerals [41]. It uses very sophisticated techniques in order to collect samples from the Mars surface and to analyze them. To navigate itself across the surface, Curiosity uses so called ‘Hazcams’ and ‘Navcams’. These are hazard avoidance cameras and navigation cameras. These will be further elaborated.
Hazcams
The four hazard avoidance cameras are located on the lower front and back of the vehicle. They operate in black and white, using visible light to create a 3D-image of its surrounding environment [42]. It also works in tandem with software that allows the rover make its own safety choices and to "think on its own", which makes it autonomous. The cameras each have a wide field of view of about 120 degrees. The rover uses pairs of Hazcam images to map out the shape of the terrain as far as 3 meters in front of it, in a "wedge" shape that is over 4 meters wide at the farthest distance. The cameras need to see far to either side because unlike human eyes, the Hazcam cameras cannot move independently; they are mounted directly to the rover body.
Navcams
Mounted on the mast (the rover "neck and head"), these black-and-white cameras use visible light to gather panoramic, three-dimensional imagery. The navigation camera unit is a stereo pair of cameras, each with a 45-degree field of view that supports ground navigation planning by scientists and engineers. They work in cooperation with the hazard avoidance cameras by providing a complementary view of the terrain. [43]
Mars 2020
The Mars 2020 rover is basically a more advanced version of the Curiosity rover. It has as a goal to not only investigate if life was ever possible on Mars, but also to look for signs of microbiological life in the past. It will collect promising rock samples and store them for future investigation with equipment that is too large to take to Mars. Furthermore it will also look for ways to produce oxygen from the Mars atmosphere and for ways to collect water from the Martian soil [44]. It will use the same navigation instruments as the Curiosity rover, only a bit more advanced.
[45] This paper describes multi createria dicision making methods for autonomous navigation for ground robots. According to the paper, this method should be able to let the robot make more precise alternative evaluations and minimize the probability the robot will be stuck or collide with objects.
[46] This paper is focused on underground mining. Uses four-wheel vehicles that minimizes curvature variation in the path it takes and stays in a certain safety margin from the mine walls. It presents a study that uses a B-spline for path determination. A B-spline (or basis spline) is a spline function. This means that the function can be reconstructed by connecting different polynomials. All possible spline functions can be reconstructed by connecting different B-spline functions.
[47] The focus of this paper lies on aerial robots in an underground mine. These aerial drones use both visual and thermal cameras to ensure a good understanding of the surroundings in order to map in these dark, dust-filled areas.
[48] This paper describes a framework for terrain characterization and indentification. This framework is composed of vision-based classification of upcoming terrain, terrain parameter identification via wheel-terrain interaction analysis and acoustic wheel-terrain contact signatures based terrain classification.
[49] This paper provides a new solution to the simultaneous localization and mapping problem with six degrees of freedom. he additional three degrees of freedom are yaw, pitch and roll angles. A robot on a natural surface has to cope with all of these degrees of freedom. With this solution an autonomous mobile robot can create a 3D map of a scene such as a mine or a cave.
[50] This article shows the parts of planet Mars that the robot is most likely to be on in case of harvesting missions.
[51] Mars orbital data explorer
Mars Terrain
[52] This paper investigates the slope distribution in the northern hemisphere of Mars from topographic profiles collected by the Mars Orbiter Laser Altimeter.
[53] This paper describes the calculation of slopes and the characterization of surface roughness using profiles obtained by the Mars Orbiter Laser Altimete.
OLD STATE OF THE ART:
General
[54] NASA plans to use multiple mining robots together in order to supply a colony with materials. These robots should work together in a "swarm". They will work individual first, but when one robot finds something interesting it will call the other robots in order to help it with extraction.
[55] Competition for students to build mining robots. Maybe a good place for inspiration.
[56] Maybe interesting. Not looked at yet.
[57] NASA page including all kinds of information sources about space colonies.
[58] Space Settlements: A Design Study. Includes information about all aspects of a space settlement including resources needed to maintain and expand.
[59] What do we need to know to mine an asteroid? States that science is nearly able to develop a space mining technology, only further knowledge of asteroid contents is needed.
Locating and mining materials
[60] While not about robots, this paper presents the method of using a detailed world model of the geological structure of the ground in order to locate different ores in the ground. It uses different sensors across the mining area, which could be placed on a robot which moves around, in combination with a supervised learning algorithm to build this world model. ~Might be interesting. No access to full paper yet however.
[61] This paper describes methods to build the spectral library to map geology on minefaces. The library includes multiple environmental conditions such as the inclusion of shade and moisture. Such a spectral library can be used by autonomous mining robots to identify different materials.
[62] In this paper an automated technique that allows a robot to classify the shape and other geological characterics of material from a 2D photographic images and stereographic data. This technique first seperates the material from the background after which various metrics are used to classify the materials sphericity, roundness, and other geometric properties.
[63] In this paper a new automated geological perception system is presented. It detects and classifies geological structures by using hyperspectral imaging sensors and a learning algorithm. Ultimately the system builds a rich model of the operating environment which can be used in autonomous mining.
[64] This paper gives information about an economically favourable mining technique called Optical mining. This method of mining will provide affordable mission consumables and radiation shielding.
[65] Asteroid Mining. Explores possibilities for space mining on asteroids. This paper comes to the conclusion that a solar powered mining vehicle, that runs on water and that mines water and platinum group metals, would be potentially feasible in the near future.
[66] Asteroid Mining. States how far we are on developing space mining technology. This might happen within a decade, once a cost-effective method is found. Also addresses financial, environmental and legal issues.
Transporting materials
[67] June 26, 1951 R. w. GAUSMANN APPARATUS FOR TRANSPORTING MATERIALS 5 Sheets-Sheet 1. Is about a technique for for transporting materials without changing the compounds temperature which may be necessary to prevent chemical changes in the material being transported, or to prevent it from solidifying within the car whereupon it would have to be heated to be removed therefrom.
[68] Describes a bag with means for vacuuming an internal space of the bag. This can extend the lifetime of organic matter.
[69] Extraterrestrial construction materials by M.Z.Naser. This review explores the suitability of construction materials derived from lunar and Martian regolith along with concrete derivatives, space-native metals and composites, as well as advanced and non-traditional materials for interplanetary construction.
[70] Space-native construction materials for earth-independent and sustainable infrastructure. This review covers feasibility of exploiting in-situ lunar and Martian resources as well as harvesting of elements and compounds, from near Earth objects (NEOs), to produce extraterrestrial materials suitable for construction of space-based infrastructure.
[71] Materials and design concepts for space-resilient structures. This paper presents a state-of-the-art literature review on recent developments of “space-native” construction materials, and highlights evolutionary design concepts for “space-resilient” structures.
Society
[72] Societal challenges in sustainable space mining. This article focuses on sustainable space mining and the issues it brings up. Potential issues are: 1) Legal issues 2) Issues in investment 3) International disputes 4) Environmental protection.
[73] Space Law in Asteroid Mining. In order to ensure legitimate space mining, countries need to update their own legislation and cooperate internationally in this area.
Research
General design
Power storage
The average temperature on Mars is 230 -63 °C and the minimum and maximum temperatures are -140 °C and 20 °C. [74] Any form of energy storage for the water transport robot would have to be capable of charging and recharging energy with this vast range of external temperatures, specifically the lower end of the range could cause problems for energy storage. Currently the battery with the lowest operational temperature only functions well for temperatures as low as -70 °C. [75] This battery was developed by researchers in China in 2018 and utilises electrodes based on two organic compounds. Unlike the electrodes in used lithium-ion batteries, these organic compounds don’t rely on intercalation, which is the reversible inclusion or insertion of ions into their molecular structure.
Solar energy
Solar panels or also called photovoltaic modules are a collection of photovoltaic cells. These cells use sunlight as source to generate electricity.[76]
Performance
The performance of a solar panel depends on many different aspects. The most important aspects are the sunlight that hits the surface of the solar panel, the efficiency of the conducting material in the cells of the solar panel and the size of the surface of the solar panel. There are also many other aspects that determine how many energy is created like whether there is something blocking the sunlight or dust particles and temperature of the cells. The global formula to estimate the energy generated by a photovoltaic system is stated as presented below [77] .
In this formula, the following variables are used; E = Energy (kWh) H = Annual average solar radiation on tilted panels (kWh/m^2) r = solar panel efficiency (%) A = Total solar panel Area (m^2) PR = Performance ratio, coefficient for losses (range between 0.5 and 0.9, default value = 0.75).
Annual average solar radiation on tilted panels (H) The best angle for the sunlight to hit the solar panels in order to obtain maximum efficiency is 90 degrees (SOURCE). An example on earth where a system tilts the solar panels so that they always face the sun at a 90-degree angle is in a operation in Piteå [78]. The helianthus smart solar panel is a solar panel that is able to track the sun using a microcontroller based embedded system [79]. This will ensure that the angle of the sunlight hitting the solar panel is always 90 degrees. To determine the average solar radiation on the panels, the sunlight intensity on mars can give a good estimate. Power received from the sun is often measured in solar irradiance, which is the power per unit area of electromagnetic radiation. To be precise, irradiance in general is defined as “the amount of light energy from one thing hitting a square meter of another each second” [80]. Solar irradiance is measured in watt per square meter (W/m^2). The solar irradiance on Mars can be calculated using the solar constant [81]. At a distance from the sun of 1 UA, which is approximately the distance between the Sun and Earth, the solar irradiance is equal to 1361 W/m^2. Since the average distance from the Sun to Mars is equal to 1.524 UA [82], the solar irradiance on Mars can be calculated as stated below.
To check this calculation, the average solar irradiance on Mars according to NASA is 586.2 W/m^2 [83].
Efficiency (r)
The most important aspect that will determine the efficiency of the solar panels is the material that is used as the conductor. A better conductor will cause less loss of energy when converting sunlight to energy. The most common materials used in mass production at the moment are: Crystalline silicon (c-Si), amorphous silicon (a-Si), gallium arsenide (GaAs) and organometallics (soluble platinum). Each type of material has its own pros and cons, mostly being efficiency vs production cost. Crystalline silicon is most common at the moment for mass production. It has a conversion rate of about 20 - 25%. It is not the cheapest material but has a low enough cost to be considered the best material for solar panels in home installations. Gallium arsenide is a better conductor than silicone. It is however very rare, expensive and manufacturing gallium arsenide is dangerous since arsenide is poisonous. Organometallics (soluble platinum) is a metal conjugated polymer and an even better conductor than gallium arsenide. It is lightweight and relatively cheap to produce. [84] Multi-junction solar cell is GaInP/GaAs/Ge multijunction solar panels with a high efficiency of over 30%. However it is more complex and more expensive than any other. [85] We can assume that money is not much of a problem, and just pick the one that has the highest efficiency? money might have something to do with the user (NASA etc) Table containing efficienty of materials [86]
Total solar panel area (A)
To calculate how many solar panels can be put on the robot, a estimation is needed of how much space is needed for a solar panel with length L, width W and height H. Since every solar panel needs the ability to turn 360 degrees and tilt about 90 degrees, each solar panel will have surface of L * W m^2 and should have a height such that H >= 0.5 * L AND H >= 0.5 * W. Now it is important to determine what the best setup is e.g. what is the optimal placement of the solar panels on the robot such that no solar panel will overlap and we have maximum utilized surface of solar panels: One large solar panel. Couple of mid range solar panels Many small solar panels. The robot will have similair dimensions as the Mercedes Atego 1317-A 4x4 Lindner-Fischer. [87] with length: 6.62 m, width: 2.50 m and height: 3.00 m. Having one large solar panel with a length and width of 6.50 m will give a huge surface of 42.25 m2. However, it will most likely not be possible to have a height of 6.5 m and therefore not be able to tilt and turn fully. Also it is questionable whether the giant solar panel will be able to catch wind and make the robot tilt at high wind force. Moreover having a solar panel stick about 1,3 m of the front and back when they turn, since the diameter is around 9.2 m and 3,3 m of the sides which can be problamatic as well. Therfore this option will not be viable. Having multiple solar panels with a lenght and width equal to the width of the robot (200 cm) we will be able to put 3 solar panels on the robot and have a total solar panel surface of 12 m2. The height should be around 1 m in order for the solar panels to turn which is quite doable. However, the solar panel sticks 15 cm off the side when they turn, since the diameter of each solar panel is around 2.8 m and 1 m off the front and back. This could be problamatic as well when driving up or down a slope. However by sacficing some area and making the middle solar panel a bit higher, about 0,5 m and putting the first and last solar panel closer to the middle the solar panels will not stick too much over the front and back. This will however cost some effective area since the large solar panel will shade the 2 smaller ones. So if we lose 50 cm of the front and back, the the area will decrease by 0.5 m * 2 m * 2 solar panels * 0.8 (80% loss due to shade) = 1.6m2. So we will have a remaining solar panel area of 10.4m2. Another solution for the solar panel width / length is to have many small solar panels with length and width 1 m. We can put them in pair on the robot, such that they only stick about 10 cm of the side, since it will have a diameter of 140 cm, and have height 0.5 m. This will enable us to put around 5 pair of solar panels and the robot, having the solar panels only stick 25 cm of the front and back. This gives us a total solar panel area of around 1 m2 area per panel * 2 solar panels per pair * 5 pairs = 10 m2. Therefore the best option is to use 3 middle size solar panels.
Performance ratio (PR)
The performance ratio is most difficult to determine and will require many assumptions. The losses for certain temperature, shade and dust can be determined with some precision, while others will depend on the implementation, wiring and manufacturing of the solar panels. Example of detailed losses that gives the PR value are: [88] Inverter losses Temperature losses DC cables losses AC cables losses Shadings Losses at weak radiation Losses due to dust, snow...
Temperature losses
A higher temperature reduces the efficiency of the solar panels. [89] In contrast a lower temperature will increase the efficiency of the solar panel. The formula for calculating the loss of temperature is: TL = TC * (TT - MT) [90] with: TL = temperature losses TC = temperature coefficient TT = tested temperature MT = modular temperature The temperature coefficient depends on the type of conductor that is used for the solar panel. The temperature coefficient of GaInP/GaAs/Ge multijunction is -0.09%.[91] The efficiency is tested at a standard of 25 °C, therefore the tested temperature is also 25 °C. The modular temperature is the temperature of the area where the solar panel is placed. For now, we wil use the average temperature on Mars of -63 °C .Therefore the total temperature loss (or gain in this case) = -0.09% (25 - (-63)) = -7.92%.
Do solar panels work at -70 degrees? [92]
Shadings
Most clouds on mars exist of ice water and clouds are also formed during dust storms. These clouds can decrease the brightness of the sun up to 40%. [93] As such we will assume the average of performance decrease to be around 20%.
Dust
Dust can be a large problem for the energy output of the solar panels. We can assume that at the start of every trip the solar panels are cleaned and the loss due to dust is 0%. However, since Mars has a lot of dust on its surface and can have a lot of dust in the air after dust storm/ dust devils it can stick to the surface of the solar panel and dramatically decrease the energy generator to 30%. ["Self-Cleaning Solar Panels Maximize Efficiency".] To increase the performance of the solar panel during or after sandstorms, an Arduino Uno microcontroller can be used to track the power generation and cleans the photovoltaic surface when it drops to 50% from its rate value. It then uses a wiping tool to clean the surface of the solar panels. This method was proposed for solar panels in Iraq since dust storms are quite normal there. [94] For the water transport robot it could be wise to set the bound for cleaning the solar panel lower such that it cleans the panels at a lower drop. We will assume that it is possible to have the module clean the solar panels when its rate value drops to 15%. This would of course mean that more wiping fluid is needed. Another method is to implement MPPT for each module individually which can measure performance and fault detection at module level. This ensures that if a part of the solar panel becomes shaded or too dusty, the power output doesn’t drop to zero. [95] If both methods described above are implemented, dust will most likely not exceed a loss of 15% and have an average loss of about 8%.
Other losses
Since it is difficult to determine what the other losses will be we will assume the average for each of he remaining losses [96] : Inverter losses (7%), DC cables losses (2%), AC cables losses (2%) and losses at weak radiation (5%) which combined give a loss of 16%.
Total energy
H = 585,987 W/m^2 * 0.001k * 240 h = 140,64 kWh/m^2 r = 32.00% A = 10.40 m^2 PR = 100% - ((-7.92%) + 20% + 8% + 16%) = 63.92% E = 140,64 kWh/m^2 * 0.3200 * 10.40 m^2 * 0.6392 = 299,2 kWh [Excel file to compute the annual solar electrical energy output of a photovoltaic system : PV-power-calculation-basic.xls]