PRE2019 3 Group20: Difference between revisions
(→Users) |
(→Users) |
||
Line 34: | Line 34: | ||
In this project we lay a more specific focus on the beach of Scheveningen, as this is a familiar environment, has great tourism and are easily approachable. The people that are most responsible for this beach are boulevardmanagers Eite Levinga and Peggy ten Hoopen. We urge to contact them as they can provide us with more experience and expertise about the most common kind of litter and about their current techniques for litter-removal. | In this project we lay a more specific focus on the beach of Scheveningen, as this is a familiar environment, has great tourism and are easily approachable. The people that are most responsible for this beach are boulevardmanagers Eite Levinga and Peggy ten Hoopen. We urge to contact them as they can provide us with more experience and expertise about the most common kind of litter and about their current techniques for litter-removal. | ||
The goals of the users (the city councils) are as followed: | |||
# The users aim to preserve the environment by minimizing the amount of litter and trash on the beaches as well as avoiding or decreasing sea pollution. Protecting plants and wildlife on land as well as sealife plays a big role in this motivation. | |||
# The users aim to preserve cleaner beaches to satisfy tourists and local visitors, which will positively influence the appeal of the area. Preserving this reputation is an important factor to boost the local economy. | |||
In order to achieve these goals, the robot is required to have certain abilities and features. | |||
The robot will replace the job of a group of humans. To make this transition into robot labor profitable for the users, the job needs to be done more efficiently in terms of time and it has to be financially beneficial in the long run. In order to achieve this, the robot needs to work autonomously. If a lot of time is required of employees to use of the robot, it still requires some human labor with a salary, and therefore it is also limited to the skill and attention of the operator, making it more expensive and inconvenient. If the robot requires a lot of maintenance (both routine/preventative and emergency), it will be quite expensive and less reliable. Therefore, the robot needs to be low maintenance, with easy routine maintenance to prevent a total breakdown with costly repairs and downtime. | |||
As beaches can be kilometers long, cleaning them will take a fair amount of time. To make this as efficient as possible, the robot is required to have a big long-lasting battery. To avoid an inefficient Roomba-like concept, the robot is required to have a detection system which can identify litter from the sand. The robot will have to store the litter as it moves on. To support the efficiency, the size of this storage is desired to be big. As the robot is required to move around on uncertain terrain like sand, meaning no flat surface, the robot has to be equipped with a mobility system that is able to overcome obstacles and rough terrain. | |||
=== Stakeholders === | === Stakeholders === |
Revision as of 23:38, 11 March 2020
Group members
Name | Student ID | Program |
---|---|---|
Erik Heijerman | 1298968 | Industrial Design |
Wouter Meeuwis | 1338390 | Industrial Design |
Kevin Pits | 0896637 | Software Science |
Teun Schutten | 1333607 | Industrial Design |
Problem statement and objectives
As summer approaches and it gets hotter in the Netherlands, yearly millions of people flock to the Dutch beaches to cool down, get a tan and escape the bustle of the city. this is not only a popular activity for locals, but also for millions of tourists who visit the Netherlands every year. The beach at Scheveningen, one of the most popular beaches in the Netherlands, already welcomes 17 million visitors annually[1].
This big source of tourism boosts the local economy, but also has its downsides. Because more often than not there are too few trash cans on the beaches, and people generally cannot be bothered to take their trash with them, beaches get littered. Lots of plastic packaging, glass bottles, aluminum cans and other waste ends up in the sand, most of which does not decompose. Unless it is picked up by someone else it will stay in the sand forever, damaging wildlife living on the Dutch beaches like seagulls, seals or wild horses. On top of this, due to tidal activity, the waste that is close to the shoreline can end up in the water, which is harmful for the sea life.
There have been some local initiatives to clean up litter on the beaches. An example of this is a yearly 95 day clean up action at the beach of Scheveningen, that this year resulted in 3100 kilos of collected trash[1]. However, the entire problem cannot be solved by these local initiatives only. Having people picking up litter is very time consuming, inefficient and it requires a lot people to properly do it. On top of this, because of bad labor circumstances it almost always has to be done by volunteers.
In this project, we want to develop a robot which is able to autonomously collect litter on beaches in an efficient, strategic and sustainable way. The robot is first and foremost aimed to be more efficient than its human counterparts by using innovative techniques to pick up litter and by working more continuously. Another objective is to let the robot operate in a strategic and rational way, such that it for instance avoids cleaning the same space twice in a short time period. Thirdly, the robot has to function in a sustainable way by using renewable energy.
Users
Our users are the RVB and the city councils of municipalities which border a coast.
In the Netherlands, the beach from the sea to the dune foot is property of the Rijksvastgoedbedrijf (RVB). The Rijksvastgoedbedrijf is the real estate organization of the Dutch government. The RVB is responsible for the management and maintenance of real estate in use by the Dutch state. This means that for the Dutch beaches, the Rijksvastgoedbedrijf together with the city council of the city where the beach is located are responsible for maintaining and taking care of these beaches. Because they are both responsible for this task, they will also be the users of the robot.
In this project we lay a more specific focus on the beach of Scheveningen, as this is a familiar environment, has great tourism and are easily approachable. The people that are most responsible for this beach are boulevardmanagers Eite Levinga and Peggy ten Hoopen. We urge to contact them as they can provide us with more experience and expertise about the most common kind of litter and about their current techniques for litter-removal.
The goals of the users (the city councils) are as followed:
- The users aim to preserve the environment by minimizing the amount of litter and trash on the beaches as well as avoiding or decreasing sea pollution. Protecting plants and wildlife on land as well as sealife plays a big role in this motivation.
- The users aim to preserve cleaner beaches to satisfy tourists and local visitors, which will positively influence the appeal of the area. Preserving this reputation is an important factor to boost the local economy.
In order to achieve these goals, the robot is required to have certain abilities and features.
The robot will replace the job of a group of humans. To make this transition into robot labor profitable for the users, the job needs to be done more efficiently in terms of time and it has to be financially beneficial in the long run. In order to achieve this, the robot needs to work autonomously. If a lot of time is required of employees to use of the robot, it still requires some human labor with a salary, and therefore it is also limited to the skill and attention of the operator, making it more expensive and inconvenient. If the robot requires a lot of maintenance (both routine/preventative and emergency), it will be quite expensive and less reliable. Therefore, the robot needs to be low maintenance, with easy routine maintenance to prevent a total breakdown with costly repairs and downtime.
As beaches can be kilometers long, cleaning them will take a fair amount of time. To make this as efficient as possible, the robot is required to have a big long-lasting battery. To avoid an inefficient Roomba-like concept, the robot is required to have a detection system which can identify litter from the sand. The robot will have to store the litter as it moves on. To support the efficiency, the size of this storage is desired to be big. As the robot is required to move around on uncertain terrain like sand, meaning no flat surface, the robot has to be equipped with a mobility system that is able to overcome obstacles and rough terrain.
Stakeholders
In addition to the users of the robot, there are various other stakeholders who are of great importance. One of these stakeholders are the visitors of the beaches. After all, these visitors benefit from a clean, litter free beach on their day off.
The littering by the visitors of the beaches has a major negative effect on wildlife on land as well as in the sea. The natural habitat of the wildlife is seriously disturbed by the litter. In addition, many animals die from consuming plastic which is left behind on beaches. The robot is of great importance for maintaining a healthy natural habitat for the wildlife. This is the reason that wildlife on land and in the sea is seen as an important stakeholder.
User Requirements
The goals of the users (the city councils) are as followed:
- The users aim to preserve the environment by minimizing the amount of litter and trash on the beaches as well as avoiding or decreasing sea pollution. Protecting plants and wildlife on land as well as sealife plays a big role in this motivation.
- The users aim to preserve cleaner beaches to satisfy tourists and local visitors, which will positively influence the appeal of the area. Preserving this reputation is an important factor to boost the local economy.
In order to achieve these goals, the robot is required to have certain abilities and features.
The robot will replace the job of a group of humans. To make this transition into robot labor profitable for the users, the job needs to be done more efficiently in terms of time and it has to be financially beneficial in the long run. In order to achieve this, the robot needs to work autonomously. If a lot of time is required of employees to use of the robot, it still requires some human labor with a salary, and therefore it is also limited to the skill and attention of the operator, making it more expensive and inconvenient. If the robot requires a lot of maintenance (both routine/preventative and emergency), it will be quite expensive and less reliable. Therefore, the robot needs to be low maintenance, with easy routine maintenance to prevent a total breakdown with costly repairs and downtime.
As beaches can be kilometers long, cleaning them will take a fair amount of time. To make this as efficient as possible, the robot is required to have a big long-lasting battery. To avoid an inefficient Roomba-like concept, the robot is required to have a detection system which can identify litter from the sand. The robot will have to store the litter as it moves on. To support the efficiency, the size of this storage is desired to be big. As the robot is required to move around on uncertain terrain like sand, meaning no flat surface, the robot has to be equipped with a mobility system that is able to overcome obstacles and rough terrain.
Approach, milestones and deliverables
Approach
- Research into the State of the art
- Defining the problem statement
- Formulating requirements
- Ideation
- Synthesisation
- Simulation
- Prototyping
- Testing
- Evaluation
- Integration of findings in final design
Milestones
- Summary of the State of the art, a defined problem statement and a list of requirements.
- Concrete concept out of the ideation and synthesisation. 1st generation design
- Simulation of the concept.
- Final concept. 2nd generation design
- Prototype.
- Test and evaluation results.
- Final design. 3rd generation design
Deliverables
- Final design
- Prototype
- Complete wiki page
- Final presentation
Task division
Timekeeping
Week 1
Name | Total hours | Breakdown |
---|---|---|
Erik Heijerman | 7 | Group meetings: 5, Searching papers: 1, Writing & Reviewing: 1 |
Wouter Meeuwis | 8.5 | Group meetings: 5, Searching papers: 2, Writing the User and stakeholder part: 1.5 |
Kevin Pits | 8 | Group meetings: 5, Copyediting and wiki: 3 |
Teun Schutten | 10 | Group meetings: 5, Writing Problem statement and objectives: 2, Reviewing and correcting: 1, Searching papers: 2 |