PRE2019 3 Group13: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 354: Line 354:
| rowspan="5" style="text-align: center;" | Group Work
| rowspan="5" style="text-align: center;" | Group Work
| Brainstorm about the subject during meeting  
| Brainstorm about the subject during meeting  
|  
| Meeting Planning + prepare feddback session
|  
|  
|  
|  

Revision as of 13:10, 12 February 2020

Group members

Student name Student ID Study E-mail
Yara Daamen 1337157 Pyschology & Technology y.f.daamen@student.tue.nl
Heather Hanegraaf 1330454 Biomedische Technologie h.e.h.hanegraaf@student.tue.nl
Mayke Scheffer 1234784 Electrical Engineering m.scheffer1@student.tue.nl
Wouter Haneveer 1300334 Computer Science w.haneveer@student.tue.nl
Gijs van Bakel 1239472 Applied Physics g.v.bakel@student.tue.nl

Problem Statement

Simple tasks like eating are not as obvious for everyone. For instance: people with a tremor, or who are suffering from Parkinson’s disease have trouble with something as simple as bringing a spoon to their mouth. Their meals take a lot longer and they often have to be assisted while eating. There are several products available on the market like self-stabilizing spoons and forks. The disadvantage of these products is that they are quite expensive and big. This means people are able to eat independent again, but they should always take their own cutlery with them.

Objectives

Cost efficient

To keep the safety of the user’s in mind, the device should cost less than €100, - since they most likely have to carry it with them often and an expensive device can increase the risk of getting robbed. A lower price also increases the accessibility for more people.

Comfortable in use

The device should be comfortable in use for the target group. It should have a shape that is comfortable for at least 90% of the users for the duration of a three-course meal. Using the device should not cause any pain or harm and users should have no negative feelings against using it. These criteria will be verified through user tests. The user should be fully comfortable to use the device within two weeks of getting used to it.

Recognize nature of movement

The device should recognize unwanted vibrations that are, for instance, caused by a tremor or Parkinson’s disease. The unwanted vibrations should be distinguished from wanted movement of the cutlery within one period of movement. The error in recognizing the nature of the movement should be less than 10%.

Act on unwanted movement

When an unwanted movement is recognized, this should be compensated by keeping the piece of cutlery stable. The stabilizing should not take more than two periods of the unwanted vibrations. The piece of cutlery should only be allowed to move in the direction of the wanted movements.

Modular

The device should be compatible with at least 90% of the cutlery that is used in restaurants. Therefore the part of the device that is connected to the cutlery must be adjustable in size and it should be able to attach and use the device within one minute. The device should be able to work for at least three hours without intermediate charging.

Users

The primary users that this project is focused on are people with tremors, patients who suffer from Parkinson's disease in particular. According to volksgezondheid.info, an estimate of 52.200 people suffer from the condition in the Netherlands. The disease is more common the older a person gets, and is extremely rare in people under 50 years old.

What the users require is the following:

1. Autonomy

The user requires the device to be autonomous, so it must be able to reduce the effects of tremors without needing the patient to exert extra effort.

2. Independence

The user requires the device the be used independently, without the assistance of any other person.

3. Compatibility

The user must be able to use the device on any cutlery.

4. Comfortability

The user must be able to use the device for extended amounts of time without being uncomfortable.


Approach, Planning, Milestones and Deliverables

Approach

The aim of this project is to help people with nerve diseases such as tremor to become more independent. We are going to do this by making special cutlery, which makes it possible to eat independently for this target group. We want to achieve this goal by delivering a prototype and model on how the cutlery can be implemented. The approach to reach those two goals contains multiple steps.

1. Research

Firstly, we will be going through research papers and other sources which describe the state of art of such cutlery and its respective components. This allows our group to get a grasp of the current technology of such a system and introduce us to the new developments in this field. This also helps to create a foundation for the project, which we can develop into. The state of art also gives valuable insight into possible solutions we can think and whether their implementation is feasible given the knowledge we possess and the limited time. The Research has to be done with the use of literature, survey(s), personal interview(s), recent reports from research institutes and the media and analyzing patents which are strongly connected to our project.

2. USE aspects

Furthermore, we will continue to analyze the problem from a USE – user, society, enterprise – perspective. An important source of this analysis is the state of art research, where the results of these cutlery systems in different stakeholders are discussed. The USE aspects will be of utmost importance for our project as every engineer should strive to develop new technologies for helping not only the users but also the society as a whole and to avoid the possible consequence of the system they develop. This analysis will finally lead to a list of requirements for our design.

3. Product shaping

Finally, we hope to develop a prototype in which the product will be conceptualized and programmed. In this process the RPC's are used to choose the program, hardware and the approach of the programming language itself.

4. Documentation

The wiki has to be updated and look like a report at the end of the project. To accomplish this someone will be assigned to check and edit the page every week. Besides the wiki, a presentation has to be made in anticipation of the last few weeks. Together with the prototype, the wiki page and the presentation are our final deliverables for the project.

Below the summary of the main steps in our approach of the project.

  • Doing research on our chosen project using SotA literature analysis
  • Analyzing the USE aspects and determining the requirements of our system
  • Choose the Hardware and Software for the prototype
  • Work on the prototype
  • Create a demo of the tracking functionality
  • Evaluate the prototype

Milestones

Here the major milestones can be found for every week. :

  • Week 1: The subject is chosen and also the Plan for the project has been made.
  • Week 2: It is clear who the users are, the research is finished and also the requirements are decided.
  • Week 3: Research into design prototype and costs + Enquete.
  • Week 4: Research into software prototype and a list of parts and estimation of costs is made + Enquete.
  • Week 5: Building prototype + information from enquete to improve the prototype.
  • Week 6: The prototype has been made.
  • Week 7: The tracker demo will be finished in order to be at the presentations.
  • Week 8: The wiki page is finished and updated with the results that were found from testing the prototype. Also, future developments are looked into and added to the wiki page.

Deliverables

Within this project there are four final deliverables.

  • This wiki page, which contains all of our research and findings
  • A presentation, which is a summary of what was done and what our most important results are
  • A prototype
  • A video of the tracker demo

Planning

Name Week #1 Week #2 Week #3 Week #4 Week #5 Week #6 Week #7 Week #8
Research RPC's and USE Analysis + start prototype research Hardware Design + Enquete Software Design + Enquets Prototype / Model implement Proof Reading Future Developments Conclusions
Heather Hanegraaf Write approach, milestones and deliverables RPC's Wiki Page control
Brainstrom subject ideas
Make the planning
Yara Daamen Research 13 papers USE Analysis Wiki Page control
Add the research papers to the wiki page
Mayke Scheffer Write problem statement and objectives Research Prototype Wiki Page control
Wouter Haneveer Research 5 or more papers Requirements Justification Wiki Page control
Add the research papers to the wiki page Sumarry State of the art
Gijs van Bakel Write User part Research Prototype Wiki Page control
Research 7 papers
Group Work Brainstorm about the subject during meeting Meeting Planning + prepare feddback session
Online meeting (Whatsapp) about subject

Literature Study