PRE2018 4 Group1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
Line 248: Line 248:


The needs of the infirm blind and visually impaired are different from those of the able-bodied blind, and this is why the study on both must be seen differently from each other. This manifests itself in the need to combine both a walking support and a mobility device. The concentration must lay with developing the user interface and control systems required to provide a reliable mobility aid in a dynamic environment.
The needs of the infirm blind and visually impaired are different from those of the able-bodied blind, and this is why the study on both must be seen differently from each other. This manifests itself in the need to combine both a walking support and a mobility device. The concentration must lay with developing the user interface and control systems required to provide a reliable mobility aid in a dynamic environment.
==NEW State of the Art research==
If one is to design a technology for visually handicapped people, one has to take certain aspects into account. First of all, it would be wise to contact users in order to be able to discuss your thoughts and ideas with users who will use the product, rather than that you think of a problem from your engineer mindset, and provide a solution for that problem. This section discusses certain aspects of a possible technology for the visually impaired, and what the state of the art is on these aspects.
===Companionship===
The technology to be developed could serve as a supplement to the existing guidance tools for blind people. However, it could also be possible for the technology to replace the existing tools. One of the most used tools is the service dog. This dog is trained very well, and guides the blind user through their daily lives. It also serves, like any other dog, as a companion. If one where to design a robot that replaces these dogs, it should take into account that the robot will need to serve as a companion as well. The designer would need to take into account how the approach to the Human Robot Interaction (HRI) is performed. Several studies have looked into this. For instance <ref>Miklosi, A., Korondi, P., Matellan, V., & Gacsi, M. (2017, June 9). Ethorobotics: A New Approach to Human-Robot Relationship. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465277/</ref> suggest a new approach to HRI, by looking at the uncanny valley hypothesis. On the other hand <ref> H. Nguyen, C. C. Kemp, Bio-inspired Assistive Robotics: Service Dogs as a Model for
Human-Robot Interaction and Mobile Manipulation, https://smartech.gatech.edu/bitstream/handle/1853/37366/biorob08_canine.pdf </ref>
uses the existing service dog as a model how HRI should be. <ref>Banks, M. R., Willoughby, L. M., & Banks, W. A. (2008). Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 9(3), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007</ref> compares the use of robotic dogs to that of living dogs, and found that living dogs still have a higher likeliness than robot dogs. <ref>Winkle, M., Crowe, T. K., & Hendrix, I. (2011). Service Dogs and People with Physical Disabilities Partnerships: A Systematic Review. Occupational Therapy International, 19(1), 54–66. https://doi.org/10.1002/oti.323</ref> looks into the way one could use a soft robot to improve the attachment of the user to the robot. <ref> K. Dautenhahn, S. Woods, C. Kaouri. M. L. Walters, K. L. Koay, I. Werry What is a Robot Companion - Friend, Assitant or Butler, https://uhra.herts.ac.uk/bitstream/handle/2299/7119/901108.pdf?sequence=1&isAllowed=y </ref> keeps it more globally, and looks into the role we give to a robot companion. Lastly, in <ref>Arnold, T., & Scheutz, M. (n.d.). The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/29182090</ref> it is described what is important when one designs for HRI purposes.
===Wayfinding===
Another very important subject to be looked at is the wayfinding of blind people. They can either use a walker, or a service dog. There is already quite a lot of research that has investigated several technological improvements for the guidance of blind people. Since this is of a very high importance for their independence, mobility and safety, it is important research. In <ref>Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167</ref><ref>Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498</ref><ref>Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588</ref><ref>Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706</ref> there are several existing technologies that are helping the visually impaired in their everyday life. <ref> V. Kulyukin, C. Gharpure, J. Nicholson, G. Osborne, Robot-assisted wayfinding for the visually impaired in structured
indoor environments, https://link.springer.com/content/pdf/10.1007/s10514-006-7223-8.pdf </ref> on the other hand suggest using an ERobot to support blind people in structured indoor environments. They suggest that by using a robot, the user is less subjected to the load of the technologies themselves. <ref>Bourbakis, N. (2008). Sensing Surrounding 3-D Space for Navigation of the Blind. IEEE Systems https://ieeexplore-ieee-org.dianus.libr.tue.nl/stamp/stamp.jsp?tp=&arnumber=4435653</ref> reports that current technologies concerning navigation target specific technological defects, but neglect social aspects and do not provide an integrated, multifunctional, transparent, and extensible solution that addresses the variety of challenges (such as independence) encountered in lives of blind people every day. In <ref>Dong, H., & Ganz, A. (n.d.). Automatic generation of indoor navigation instructions for blind users using a user-centric graph. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/25570105</ref>, there is a graph made which contains 31 actions that a user can take in a controlled indoor environment. This can then be used to guide a visually impaired user through a similar setting using auditory feedback. <ref>Kulkarni, A., Wang, A., Urbina, L., Steinfeld, A., & Dias, B. (2016). Robotic assistance in indoor navigation for people who are blind. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), . https://doi.org/10.1109/hri.2016.7451806</ref> proposes a robotic guide that the user can hold on to which will then guide the user. All of the above technologies are good examples of how the guidance of blind people could be improved.
===Tools===
As mentioned before, there are already certain tools that a blind user can help in their every day life. The most well known is the walker that helps them locate obstacles in their path. This is also a good aspect where technology can be used to improve the life of blind people. For instance, if one where to design a robotic dog, it will also need to take into account that this will need to be able to cope with unexpected events. <ref>Cully, A., Clune, J., Tarapore, D., & Mouret, J. (2015, May 28). Robots that can adapt like animals. Retrieved May 3, 2019, from https://www.nature.com/articles/nature14422</ref> proposed a robot that is able to adapt to situations that the engineer did not foresee by storing knowledge in a behavior-performance space to make them able to react quicker. Another important aspect could be that one will want to make the robot walk, in a similar way that the user do. <ref>Liu, J., Tan, M., & Zhao, X. (2007). Legged robots — an overview. Transactions of the Institute of Measurement and Control, 29(2), 185–202. https://doi.org/10.1177/0142331207075610</ref> looks into the advantages of making the robot have legs. In <ref> S. MacNamara, G.Lacey. A smart walker for the frail visually impaired https://ieeexplore.ieee.org/abstract/document/844786/authors#authors </ref>, a smart walker is proposed that helps the user take the smoothest path in order to make it comfortable for them. Research to the problems that users have with existing technologies is done in <ref> Iwan Ulrich and Johann Borenstein, Member, IEEE. The Guidecane - Applying Mobile Robot Technologies to Assist the Visually Impaired http://www-personal.umich.edu/~johannb/Papers/paper72.pdf </ref>, and shows that users react better to physical rather than to auditory feedback. MELDOG<ref>Tachi, S., & Komoriya, K. (z.d.). Tachi_Lab - Guide Dog Robot (MELDOG)https://tachilab.org/projects/meldog.html</ref> is an example of the design of a robotic guide dog that could serve as replacement for the regular service dogs. To make the robot affordable, it can be suggested that using LEGO Mindstorms NXT as a platform to implement the technology on could provide a low cost alternative<ref>Al-Halhouli, A. (n.d.). LEGO Mindstorms NXT for elderly and visually impaired people in need: A platform. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/26835733</ref>. HARUNOBU-6 <ref>Mori, H., & Kotani, S. (1998). Robotic travel aid for the blind: HARUNOBU-6. In European Conference on Disability, Virtual Reality, and Assistive Technology.</ref> is an example of a robotic travel aid (RoTA) that can assist visually impaired users, and could potentially serve as a replacement for the service dogs.
As mentioned above, there is already quite some research into robotic aid in the mobility of blind people. Finally, <ref>Lacey, G., & Dawson-Howe, K. (1997, July). Evaluation of robot mobility aid for the elderly blind. In Proceedings of the Fifth International Symposium on Intelligent Robotic Systems (p. 25).</ref> provides an evaluation of these technologies, especially for elderly blind.


==The users and their needs==
==The users and their needs==

Revision as of 11:16, 15 May 2019

Problem Statement

In modern society independency and mobility are of crucial value for ones everyday life. Everybody has the requirement to do whatever one wants and is able to do so. Independence and being mobile is important in everything you can depict, like having a good job, going to that job, walking to your next destination and choosing by yourself where to go next. To the majority of society mobility isn't a big issue. However, for a small part of the population this mobility and thereby independency is.

Visually impaired people have a huge disadvantage over people with visual capability. Almost all the concerns one can think of is not or slightly possible to people who can't see. But perhaps the most unpleasant concerns are the once just described; they need more resources to achieve a similar level of independence and mobility as people with regular vision. Through the ages blind people has been assisted with the design of a walking stick, assisting lines provided on public space and through Braille.

Every day people travel with public transport, as well as the visually impaired. A very specific and recent concern for visually impaired is the state of independence in public transport. There are several problems in these public areas that needs to be solved and even more problems that aren't even thought of. Over the last view years these areas have been made a little more accessible by the visual impaired user, but not as much as is required. The authorities of the Netherlands have however recently started a new campaign where is it important to keep the tactile paving free[1]. This campaign was started for society to understand the constraints visually impaired have when obstacles are placed onto these tactile paving. They wanted to show that placing obstacles can even be of danger to the visually impaired, and drew attention by promoting the campaign on two different days in over 24 municipalities in The Netherlands, including Eindhoven. It was made possible by 7 companies, including Bartiméus and the Dutch national railway company NS. Next to that, a recent study of the Dutch National TV transmitter NOS[2] has shown that the visually impaired are far from home when they collide into there almost daily concerns in public transport.

Nowadays users ask for new input for improving the independence of people through a technological perspective. Our society is forever improving and becoming more and more reliable on technology. This project aims to design a technique, protocol, prototype or system in regard with technological robotics to aid the visually impaired in public transport. Firstly, we will come up with basic and non-concrete concerns that the visually impaired might experience in these public areas. Secondly, after an interview with these potential users and the specific existing technologies that are available, a specific part of these visualized technologies will be made concrete to aid the users in a specific way. This technology will be evaluated on its costs, efficiency and other aspects which influence the way in which the user will experience and interact with it.

Group 1

Group members Student number Study Email
Lotte van Gessel 1237708 Applied Physics l.s.v.gessel@student.tue.nl
Piers da Camino Ancona Lopez Soligo 1015467 Biomedical Engineering p.h.d.camino.ancona.lopez.soligo@student.tue.nl
Sander Poot 1017804 Biomedical Engineering s.a.poot@student.tue.nl
Timon Heuwekemeijer 1003212 Software Science t.m.heukemeijer@student.tue.nl
Jan van Leeuwen 1261401 Applied Physics j.a.v.leeuwen@student.tue.nl

Brainstorm

Subject

Researching and redesigning robotic substitutes for service dogs that help blind people navigate

State of the Art research

Robots that can adapt like animals

Relevance

When designing a robotic service dog, a problem that can occur will be that the dog can become damaged while the user is out with the service dog. The following article is about how a robot can cope with problems in a similar way animals do.

Summary

In this article, a trial and error algorithm is proposed so that the robots can adapt to damage is under two minutes in a similar manner as animals. Current recovery typically involves two phases. The robot first needs to diagnose itself, which is followed by selecting the best plan to fix the problem. Problem is that it could be that not every situation is foreseen by the designer, and the robot does not have the right diagnosis or contingency plan to cope with the inflicted damage. Animals deal with injuries in a more trail and error based way. A similar algorithm could be implemented in robots to learn the robot different behaviors to injuries without the limitations to the engineers possible damage scenario’s. The current state-of-the-art algorithms for this are not suitable since they can’t cope with the curse of dimensionality. Other algorithms take up about 15 minutes and need some human demonstrations of some kind. Animals can do it in 2 minutes, so for robots it would be more practical to do so in a similar time. The main difference between animals and robots is that animals know the search space of behaviors and can therefore adapt intelligently. Robots would need to do the same in order to achieve a similar behavior. Robots used in the article store knowledge in a behavior-performance space. This helps them to cope with injuries by quickly discovering the behavior that would help in the injury at hand. [3]

Ethorobotics: A New Approach to Human-Robot Relationship.

Relevance

The robotic service dog should, besides it’s service duty, also serve as a kind of companion robot in order to build a good relationship with the user.

Summary

This article proposes a new approach to the relationship between the human and the robot. It focusses on the uncanny valley hypothesis. The uncanny valley states that humans will be more likely to interact between things that are more human-like, but when they become too similar they tend to avoid them.   It is stated that biological agents need to be able to make a difference in one of the following categories: same vs different species, familiar vs unfamiliar conspecifics and familiar conspecifics vs individuals. The division in these categories determine the way in which both agents will interact with one another. The way in which humans can divide in these categories is learned by some specific pattern of cues. This learning can take place in a certain period in the development of the person. The uncanny valley hypothesis offers two options for social robots. They should either achieve perfect similarity to humans, or humans need to be exposed to social robots from their first year of life on, so they can become more used to the robot. Both options have some problems. It is then argued that the hypothesis can be extended to a symmetric landscape, in which there is also a part after perfect similarity.

The ethological approach proposed is focused on the function of behavior, related to the environment in which the species is evolved. It states that instead of aiming for human similarity, we should aim that the robot is most suited to the function and environment that it will need to operate in. This way, the uncanny valley is avoided on both sides of the landscape. A robot designed in this way, would have its own niche in the environment. This approach has the following benefits:

  • Robots have their own evolution, without interfering with that of the human they interact with
  • There is no competition between humans and robots
  • If the robots function is no longer needed, or it does not live up to the humans expectations, it can simply be seen as irrelevant and go extinct.

The interaction between robots and humans can be linked to that of humans and dogs. In this relationship, the human interact with a morphologically very different species, which also behaves differently, in a sophisticated way. Dogs have a certain social competence, something that a social robot will also need to get so they can be integrated in society. This approach of ethorobotics suggests that social robots should be seen as a new species, and have their own niche in the environment at hand. In this way, the similarity to humans is irrelevant. Only resemblances to humans will be those needed to do its function. [4]

ERobot-assisted wayfinding for the visually impaired in structured indoor environments

Relevance

Our robot has to have some way of wayfinding in it, it is best to look at current developments in that region.

Summary

There are nowadays a lot of ways devices to help the visually impaired to assist them in navigation. However the results have been limited due to the following reasons. First many of the already existing systems require the user to wear body gear. These body gear are often very heavy and big and therefore not so practical. Secondly the user is expected to have their cognitive load remain high. This means that the user still has to make all the final decision on which path to take. Furthermore there are limited communication capabilities with the device.

The writers suggest that robot-assisted wayfinding can be a solution for these problems. As the wearable things that were applied to the user, can now be put on the robot. This decreases the load on the users significantly. Furthermore the decisions on where to go and which path to take can now be loaded onto the robot itself and the user only has to follow it. Therefore the cognitive load goes down on the user. [5]


Legged robots

Relevance

The robotic replacement dog will likely look like a dog and thus it will move with legs. This is more difficult to do than for example wheels.

Summary

There are several advantages to legged robots. The first, is that they are more adaptive on rough terrains. s. The travel trace of a legged robot consists of a series of discrete footprints, not a long continuous rut like that for a wheeled or tracked robot. Secondly, a legged vehicle possesses greater mobility and flexibility in that all its legs have many degrees of freedom (dofs).Third, a legged vehicle isolates its body from the underlying terrain and smoothly. propels its body independent of terrain details and foot placement.[6] Fourth, a legged robot is more familiar to humans than a tracked or wheeled robot since legs are the common way to get around in nature. This breeds a familiarity and allows for Zoomorphism which can lead to a stronger bond between human and robot.

Bio-inspired Assistive Robotcs: Service Dogs as a Model for human-robot interaction and mobile manipulation

Relevance

We want to create an robotic service dog, so we can look at how they behave now to help us create our own robotic service dog.

Summary

There has been an increase in interest in autonomous mobile manipulation. Highly trained animals like service dogs can provide physical assistance to the user, but these dogs are very expensive and cost a lot of time training. This paper focuses on service dogs and their ability to help the user physically in their daily life. The researchers have gone and looked at the current commands that service dogs use to communicate. They have gone and asked for the training manual for service dogs. To communicate with the dog users use commands that are short verbal phrases. Most of the times the user also uses hand gestures to communicate. The researches from this article have developed an laser pointer that can be used to communicate with the robot dog. The researchers found that 71 commands for the robot dog are enough to communicate with it for daily use, this is however only for inside and not yet possible for outside environments. [7]

Sensing Surrounding 3-D Space for Navigation of the Blind

Relevance

To make the dog usefull, it has to have state of the art 3D space navigation since it doesn't only have to move itself through but also help another person navigate

Summary

A range of adaptive technologies and devices has evolved since the 1960s to assist people who are blind in dealing with a variety of situations. The primary drawbacks included inconsistencies in feedback depending on various conditions (such as weather), possible disorientation caused by overuse of the sound space, and the fact that the information such devices provided was redundant to what the individuals could discern on their own in a more efficient manner using a cane or guide dog. The main drawbacks of existing assistive devices are the cumbersome hardware, the level of technical expertise required to operate the devices, and the lack of portability. These technological advances do not facilitate unobtrusive indoor navigation and learning from the environment. This limits employment and social opportunities for blind and visually impaired individuals. In summary, these technological advances target specific functional deficits but largely neglect social aspects and do not provide an integrated, multifunctional, transparent, and extensible solution that addresses the variety of challenges (such as independence) encountered in lives of blind people everyday. [8]

Existing Technology Aiding Visually Impaired

Relevance

In order to develop a product that aids the visually impaired, we need to know what already exists on the market. This enables us to improve upon this.

Summary

There exists a "co-robot" cane that can guide blind people through an indoor environment, using algorithms that allow it to navigate and estimate the pose of the user.[9] There is also a pair of glasses for the blind that helps them navigate, and this too has proven to be effective in indoors situations.[10]. The sensors used here are of low cost and have easy integration, so this device can be affordable for most users. There are more electronic devices that aim to aid blind people in their mobility, giving feedback by using audio feedback and/or vibration.[11][12]

A smart Walker for the Frail Visually Impaired

Relevance

Our dog has to help the person to be able to walk on it's own. Therefore this dog has to have some sort of ability to track a path

Summary

In this article a device is created to help Visually impaired and people who have some physically impairment. The device is made in such a way that is as comfortable for the user as possible, therefore it chooses the most smooth path. The device is a walker with build in path finding software. This walker can also be of aid for the visually impaired as I suppose they would feel more at ease. The device has sensors all around it to scan the environment. It does this by sonar reading. For the navigation an variation VFH+ algorithm. This algorithm seems to work fine in local environment. A very smooth path was obtained when using this device. Further development on this device is to have this aid be able to work inside buildings and have it communicate with other devices to accomplish more advanced tasks. [13]


Applying Mobile Robot Technologies to Assist the Visually Impaired [14]

Relevance

On the market there exist already technologies to help the visually impaired, we can learn from the problems from these technologies

Summary

Guide dogs are very capable to help the visually impaired, however they require an extensive training. Furthermore fully trained guiding dogs are very expensive. Also the people have to take care of a living being, feeding it etc.

Therefore technologies have been developed to help the visually impaired. However up until this point in time the following problems have occured:

  • The user has to scan his/her environment actively to detect obstacles
  • The user has to perform additional measurements when an obstacle is detected, which is very time-consuming
  • The feedback the robots give is acoustic feedback which is very deceptive to interference from the environment. A lot of noice.

Another way to give feedback to the user, instead of using acoustic, is using physical feedback. It has been proven that users react better on this kind of feedback.

Guide Dog Robot (MELDOG)[15]

Relevance

This article provide a study from 1977 stating that a more suitable (robotic) system is required to guide blind people in their mobility and thereby increasing their independence. For this, the Guide Dog Robot MELDOG is designed with the implementation on how to navigate, how to avoid obstacles and to warn the specific blind person. This article is very mathematical and came up with a complete plan on how to design such a system.

Summary

For blind people, independence is one of the most strongest desires to have. Blind people are always seen as helpless, it is seen as an handicap and there mobility is for course less strong than non-blind people, which will always put them in a situation as were there will be seen different or even be discriminated. A guide dog aids to increasing this mobility by supporting in three different ways: 1. the blind person's next step, 2. his/her directional orientation, 3. his/her navigation along reasonably long travel path on both familiar and unfamiliar terrain

In this paper, the design concept of the Guide Dog Robot MELDOG is described, as well as the navigation method using an organized map and landmarks. Next up an obstacle detection/avoidance system based on the ultrasonic environment measurement and man-machine communication is described. For this to be achieved, the robot needs to require: (a) A guiding system for itself by using an organized map of the environment and registered landmarks in the environment. (b) How the robot finds obstacles which are not registered on the map and avoids them, (c) How the robot informs its blind master about the route and the obstacles detected.

Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs[16]

Relevance

In order to be able to rely on a robotic guide dog in the first place, a comparison has to be made between a living and a robotic dog. In this study the robotic dog AIBO has been used to treat loneliness in elderly patients in long-term care facilities (LTCF). Does a robotic dog decrease the level of attachment to people of the elderly people and thereby reduce the level of loneliness as well?

Summary

The method for this study was facilitated using the animal-assisted therapy (AAT). This was done by the use of Sony’s AIBO, the robotic pet and a living pet. They used 12 participants for AIBO, 13 for the living dog and 13 for the control group. The control group did not receive AAT, so the expectation was that in this group the level of loneliness would be the highest. The experiment lasted for 8 weeks and the participants where asked about it during a questionnaire.

The results show that elderly living in long-term care facilities who received scheduled AAT with either a living or robotic dog were significantly less lonely than those who did not receive AAT. Unfortunately, no difference was found in effectiveness of a robotic dog in comparison to a living dog and that the attachment to either the living dog or AIBO did not reduce the level of loneliness for participants. However, participants who received the living dog had an higher level of attachment than those who received AIBO, but the difference was not statistically significant. Next to that, AIBO wasn’t used in its full potential. It was for instance not allowed to its voice or walk around. Therefore one cannot conclude that the robotic dog is better or worse in treating loneliness than a living dog.

Service Dogs and People with Physical Disabilities Partnerships: A Systematic Review

Relevance

The new robotic service dog won't only replace a means to see but also a companion. It is important to know the impact and relation between the blind person and their service dogs.

Summary

Occupational therapists have recognized the benefits that service dogs can provide people with disabilities. There are many anecdotal publications extolling the benefits of working with service dogs, but few rigorous studies exist to provide the evidence of the usefulness of this type of assistive technology option. This systematic review evaluates the published research that supports the use of service dogs for people with mobility‐related physical disabilities.

Articles were identified by computerized search of PubMed, CINAHL, PsycINFO, OT Seeker, the Cochrane Database of Systematic Reviews, SportDiscus, Education Research Complete, Public Administration Abstracts, Web of Knowledge and Academic Search Premier databases with no date range specified. The keywords used in the search included disabled persons, assistance dogs or service dogs and mobility impairments. The reference lists of the research papers were checked as was the personal citation database of the lead author. Twelve studies met the inclusion criteria and whereas the findings are promising, they are inconclusive and limited because of the level of evidence, which included one Level I, six Level III, four Level IV and one Level V. All of the studies reviewed had research design quality concerns including small participant sizes, poor descriptions of the interventions, outcome measures with minimal psychometrics and lack of power calculations. Findings indicated three major themes including social/participation, functional and psychological outcomes; all of which are areas in the occupational therapy scope of practice. Occupational therapists may play a critical role in referral, assessment, assisting clients and consulting with training organizations before, during and after the service dog placement process. In order for health care professionals to have confidence in recommending this type of assistive technology, the evidence to support such decisions must be strengthened. [17]

The Tactile Ethics of Soft Robotics: Designing Wisely for Human–Robot Interaction

Relevance

The robotic service dog will have to be able to have a certain amount of interaction with the user, in order to serve a companion like duty.

Summary

Soft robots are more adaptive, have a more flexible way of moving and are equipped with a more sensitive interface for the things it has to interact with. Soft robots are less hazardous in social interactions. Because of the increasing amount/demand for assistive and companion robots in our society, tactile HRI is good to consider in a design. This suggest a balance between tactile engagement and emotional manipulation by the robot. Soft robots can offer a new insight to achieve a better sensory intake by robots. To determine the way in which the robot presents its interaction with other agents, it is necessary to take into account the following three layers; outward appearance, behavior and the experienced behavior by the user. How the robot functions and presents itself is key to understand the role it employs within the relationship between the user and the robot. A framework is presented based on the following categories; bonding, specifying function and modeling in relation to social norms It is possible for humans to form a unidirectional bond with a robot that does not look or act like a human. Bonds to be formed could be strengthened by certain voice abilities or certain shapes the robot has. The robot will not have a certain humanoid form or appearance, but moving in a human or animal like way could contribute to the affection of a human to the robot. The function a robot will have in society should be a key consideration in the way it is touched by the human. Softness of robots could be a way to implicate vulnerability of the robot for the user. A soft outside appearance could be a way to invite more interaction with the robot. [18]

What is a Robot Companion - Friend, Assitant or Butler?

Relevance

How do we want that our "guide dog" behaves, what kind of companion do we want to create?

Summary

The current companion robots should be able to handle multiple tasks in the living area of the user. However this is not yet possible as for now. There is now a robot created named AIBO which's design is inspired by the appearance and behavior of a dog. It's main task is to provide entertainment for the children. Friedman and Kahn demonstrated that AIBO was psychologically engaging for both the parents and the children. However they did not attribute moral standing towards the AIBO.

Researchers have found out that most people were positive towards the ideo of a service robot being intelligent. It also was demonstrated that young people look positive towards domestic robots, in contrast to the elderly who are more frightened to domestic robots.

The text also asks the question what the robot companions behavior traits should be. Most people want the behavior of a robot companion to be highly predictable. Also 71% of the people wanted the robot to be highly controllable. 81% of people want to have the robot be highly considerate. Furthermore 71% of people want the robot to communicate in very human-like manners. However most people do not want that the robot's behavior or appearance is very human-like. [19]

LEGO Mindstorms NXT for elderly and visually impaired people in need: A platform

Relevance

This is a way in which (simple) robots have been used to help visually impaired people in need. LEGO Mindstorms can be a good platform to use, since it is relatively cheap.

Summary

The problem of the ageing society is ever increasing. Most of the robotic aids that have been developed already are of a mechanical nature. There is already a lot of research done to develop robots to help elderly and visually impaired. However, common problems these run into are that the users mostly do not have the technological know how to easily understand how to use the devices. This article aims to use LEGO Mindstorms NXT to be implemented to substitute a service dog, to facilitate health monitoring, to be a assistive robot for the user and to provide a user-friendly interface. In the NXT, several features are added in order to make it able to function as a service robot. For instance, a touch sensor was put on the robot to make sure it notices when it hits something. Also, a reminder GUI was implemented in which the user could enter several things it needed to be reminded of. The robot uses rechargeable batteries in order to cope with the issue of power consumption, and has implemented WiFi instead of Bluetooth to enable faster data transmission. The research states that the NXT could be a good low-cost user-friendly instrument to be used for these kind of purposes. [20]

Automatic Generation of Indoor Navigation Instructions for Blind Users using a User-centric Graph

Relevance

The robotic service dog will also need to be able to help the user in their home environment. This research proposes a technique in order for the robot to be able to help the user navigate through indoor environments

Summary

Visually impaired people have a big challenge when they need to navigate through unknown, indoor environments. It limits the independence of the individual since they will always have to have someone with them to help with the navigation through the building. Indoor navigation consist of both localization and path planning. GPS is not accurate indoors. This paper proposes an algorithm that generates a map of the indoor environment, and accounts for the users wayfinding ability. It assumes that users do have the well known white walking cane at their disposal. In the research there are in total 31 actions proposed which the user can perform in order to get to its next position. These actions are then put into a graph, which guides a user through every possible action. Every action has a certain weight, which is used to give the user a lower cognitive load. These actions are then eventually translated into verbal instructions for the user so it knowns which action to perform. The system is tested on blindfolded people who do have visual capabilities. The next step will be to use to system on blind/visually impaired people. [21]

Robotic Assistance in Indoor Navigation for People Who are Blind[22]

Relevance

In this study a small mobile robot, namely Pioneer 3DX, has been used for robotic assistance in indoor navigation for blind people. With the robotic device the user could hold onto the robot and was thereby designed in a way that it would harness a guide dog. They tried to make the interaction with the robot as comfortable as possible as well.

Summary

The user could hold onto the robot by the implementation of a D-handle which as placed perpendicular to the robot’s travelling direction. During the experiment, the users requested interactive features for the robot themselves. A few features where used to optimize the interaction relative to the users:

  • Sound generation for identifying the robots location. This was utilized so that the user would know where in the environment the robot would be.
  • Speech for user-robot interaction. Text-to-speech (TTS) software was used and users got the ability to choose their preferred voice.
  • Retaining user information for evolving HRI. The robot was equipped with a database for user information. In this way the robot could remember the specific people they helped.
  • Periodic user checking. With this implemented the user could easily stop a performance with the robot and perform another task or take a break while on a journey with the robot. Included was a software that the robot would ask the user every five minutes if they need anything.
  • Charge awareness. The robot has the ability to check the battery level before undertaking a task.

These are just a few examples on how to enhance the user’s experience while interacting with the robot. There are however more features that need to be implemented in order for the robot to really take over a living guide dog. Moreover, it is important to consider the acceptance and the use of the robot more. The device has to be user-friendly, but this paper describes only the initial steps to that.

Robotic travel aid for the blind: HARUNOBU-6[23]

Relevance

This research has developed a robotic travel aid RoTA to guide the visual impaired and compared it with a living guide dog.

Introduction

This RoTA has been a project since 1990 to guide the visually impaired in Japan and they wanted to design a system to help these people other than the long cane or the guide dog because they are not rich in auditory, sensing and memory of the map. RoTA is equipped with vision system, sonar, differential GPS system, dead reckoning system and a portable GIS(Geographic Information System). RoTA is superior to the guide dog in the navigation function, and is inferior to the guide dog in the mobility. It can show the route from the current location to the destination but cannot walk up and down stairs.

Guidance

The robot uses the GIS for the guide information. This guide information should give the system the information about the environment. The robot gets two kinds of signals to guide the user through the environment; a sign pattern and a landmark. The sign pattern is used to correct the location and heading errors. It has to activate and guide the fixed actions of the robot. The landmark is used to verify the current location. Next to this it uses map learning to make a digital map. This digital map is represented by a list of sections.

Conclusion

Described in this article as well:

  • Pedestrian detection by rhythm (where walking people were detected
  • Danger estimation at an intersection (where upcoming danger could be detected)
  • Experimental results (where the robot was tested alongside a user)

The most important aspect of this article is however that the HARUNOBU robot has the potential to replace the guide dog by using all the technical aspects HARUNOBU has. Nonetheless the system will require more field testing.

Evaluation of the robot mobility aid for the elderly blind[24]

Relevance

This article focusses on people how are both frail and visually impaired, and the particular problems they have. They normally suffer in a greater extent than the people how are only visually impaired and have great difficulty using mobility aids like a guide dog. Thereby this robotic research aids a physical support as well. In Europe over 65% of all the blind people are older than 70 years old. The focus thereby lies mainly at supporting the elderly.

Summary

Mobility is the ability to avoid obstacles and move through a known space safely. Mobility for elderly visually impaired is other than for the visually impaired only. Elderly normally experience difficulty walking, tiredness and start walking slower. They normally need a walking frame, rollator and a reciprocal frame and this will become a problem when they need a guide dog for their visual impairment as well. The design was a prototype whereas the user got personal adaptive mobility aid (PAM-AID). It was not seen as a guide dog, but more as a support for the user to walk around, but still be able to independently commit exercises. With this, they tried to remove the necessary human contact and increase the independence of the user without being fully dependent on the robot as well. The prototype was supported by a user interface containing a command confirmation and with a warning device for an approaching object. The detection of these obstacles was done using sonar sensors. The user could hold onto the prototype using a handle.

The needs of the infirm blind and visually impaired are different from those of the able-bodied blind, and this is why the study on both must be seen differently from each other. This manifests itself in the need to combine both a walking support and a mobility device. The concentration must lay with developing the user interface and control systems required to provide a reliable mobility aid in a dynamic environment.

NEW State of the Art research

If one is to design a technology for visually handicapped people, one has to take certain aspects into account. First of all, it would be wise to contact users in order to be able to discuss your thoughts and ideas with users who will use the product, rather than that you think of a problem from your engineer mindset, and provide a solution for that problem. This section discusses certain aspects of a possible technology for the visually impaired, and what the state of the art is on these aspects.

Companionship

The technology to be developed could serve as a supplement to the existing guidance tools for blind people. However, it could also be possible for the technology to replace the existing tools. One of the most used tools is the service dog. This dog is trained very well, and guides the blind user through their daily lives. It also serves, like any other dog, as a companion. If one where to design a robot that replaces these dogs, it should take into account that the robot will need to serve as a companion as well. The designer would need to take into account how the approach to the Human Robot Interaction (HRI) is performed. Several studies have looked into this. For instance [25] suggest a new approach to HRI, by looking at the uncanny valley hypothesis. On the other hand [26] uses the existing service dog as a model how HRI should be. [27] compares the use of robotic dogs to that of living dogs, and found that living dogs still have a higher likeliness than robot dogs. [28] looks into the way one could use a soft robot to improve the attachment of the user to the robot. [29] keeps it more globally, and looks into the role we give to a robot companion. Lastly, in [30] it is described what is important when one designs for HRI purposes.

Wayfinding

Another very important subject to be looked at is the wayfinding of blind people. They can either use a walker, or a service dog. There is already quite a lot of research that has investigated several technological improvements for the guidance of blind people. Since this is of a very high importance for their independence, mobility and safety, it is important research. In [31][32][33][34] there are several existing technologies that are helping the visually impaired in their everyday life. [35] on the other hand suggest using an ERobot to support blind people in structured indoor environments. They suggest that by using a robot, the user is less subjected to the load of the technologies themselves. [36] reports that current technologies concerning navigation target specific technological defects, but neglect social aspects and do not provide an integrated, multifunctional, transparent, and extensible solution that addresses the variety of challenges (such as independence) encountered in lives of blind people every day. In [37], there is a graph made which contains 31 actions that a user can take in a controlled indoor environment. This can then be used to guide a visually impaired user through a similar setting using auditory feedback. [38] proposes a robotic guide that the user can hold on to which will then guide the user. All of the above technologies are good examples of how the guidance of blind people could be improved.

Tools

As mentioned before, there are already certain tools that a blind user can help in their every day life. The most well known is the walker that helps them locate obstacles in their path. This is also a good aspect where technology can be used to improve the life of blind people. For instance, if one where to design a robotic dog, it will also need to take into account that this will need to be able to cope with unexpected events. [39] proposed a robot that is able to adapt to situations that the engineer did not foresee by storing knowledge in a behavior-performance space to make them able to react quicker. Another important aspect could be that one will want to make the robot walk, in a similar way that the user do. [40] looks into the advantages of making the robot have legs. In [41], a smart walker is proposed that helps the user take the smoothest path in order to make it comfortable for them. Research to the problems that users have with existing technologies is done in [42], and shows that users react better to physical rather than to auditory feedback. MELDOG[43] is an example of the design of a robotic guide dog that could serve as replacement for the regular service dogs. To make the robot affordable, it can be suggested that using LEGO Mindstorms NXT as a platform to implement the technology on could provide a low cost alternative[44]. HARUNOBU-6 [45] is an example of a robotic travel aid (RoTA) that can assist visually impaired users, and could potentially serve as a replacement for the service dogs. As mentioned above, there is already quite some research into robotic aid in the mobility of blind people. Finally, [46] provides an evaluation of these technologies, especially for elderly blind.


The users and their needs

Users are very important part of the design process. They are the ones who will use the product in the real world. They will find faults with the product. They will hopefully be helped by the product. To allow for a good design, it is very important to know the users.

Primary users and their needs

The primary users are (severely) visually impaired people. There are an estimated 302.000 people[47] who are visually impaired in the Netherlands . This might be only 1.8 % of the total population but these people experience great obstacles in their daily life that can be partially solved by better technology. What many see as easy tasks can be very hard for visually impaired people. Navigation, going from one place to another, can be impossible without proper planning. Even something as simple as a walk for fresh air can become impossible. To do this, they will require an aid which can be for example a white cane, a guide dog or a seeing companion. These aids chip away from their independence. An important part of transportation for blind people is public transport since they are not in control of the vehicle themselves which would be impossible. The only other option of traveling long distances for blind people is hitching rides from friends or taking 'care cabs'. So, to narrow our project a bit, we will focus on problems blind and visually impaired people have with public transport. We can take a look at the needs of blind people when using public transport. These needs can be broken down in several aspects:

  • Navigation: Public transport is about moving from one place to another. This is no different for visually impaired people but they have greater difficulties travelling with other means than public transport and thus have to rely more on it.
  • Safety: It has to be save for visually impaired people to use around several dangerous situations like train tracks and traffic.
  • Reliability: The project will have to convey certain information to the visually impaired person using it. This information has to be reliable. If it gives the wrong information, it could lead the visually impaired person into dangerous situations. This is not the desired outcome.
  • Clear communication: To help the visually impaired person, it is of highest importance that the communication is clear. For not visually impaired people, most communication is visible but this is of course impossible for people who can't see or whose sight is limited. To make the project communicate as smooth as possible, we have to do extensive research and talk with the users about how they perceive certain signals and how the noise in stations and around traffic affects them.

Secondary and tertiary users and their needs

The secondary users are the people working in or around public transport for example conductors. They will be the first to hear or to see when something goes wrong. They will have to know how the technology works and maybe how to fix it. Also, when a primary user (visually impaired people) doesn't fully understand some signal of the system, the people working in public transport will have to help them. Their needs are thus a simple system that is easy to explain and to fix. Also, it shouldn't make their job harder than it already is because then they will have negative feelings towards the system.

The tertiary users are the other people who travel with public transport. They have few needs. Mostly, the eventual design must not impede them in travelling. As few changes as possible should be made to their experience while using public transport.

User Contact

As said before, we made contact with visually impaired to ask them about their constraints regarding public transport in The Netherlands. Firstly we send a mail to three companies which are set up especially for blind and visually impaired people. We introduced ourselves, told them about the project and asked them if there would be a chance to arrange an interview, phone call or another method like the email to come in contact with these people. We contacted:

  • Bartiméus, voor mensen die slechtziend of blind zijn[48]
  • Koninklijke Visio, expertisecentrum voor slechtziende en blinde mensen[49]
  • Zichtbaar! Veldhoven[50]

At first, only Bartiméus responsed and told us that through them it was not possible to contact specific visually impaired people. They did however give us a link to a Facebook page especially for blind users. We then decided to create a questionnaire [51] containing 15 questions about how they experience public transport in The Netherlands. This questionnaire was published on the Facebook page and send to the MuZIEum[52], a museum made to experience what it is like for the visually impaired. We asked the museum if they could cooperate with us by giving the visually impaired this questionnaire when they visited the museum. Next up, we called Zichtbaar! Veldhoven on May 9th. Through this we came in contact with the chairmen of this company. It showed out that you did not receive information about the email and when we told about our project again, he became extremely enthusiastic. He received the questionnaire on a personal email and we arranged a meeting for Thursday 16th, in where we could get more information about how the user experienced public transport.

Potential Problems

Before contacting users, we came up with some problems we thought are relevant. These are expanded upon below.

Finding the right bus

Information about which bus stops where is mainly provided through visual feedback. For instance, Eindhoven station has about 10 bus stops, each having a number of busses stopping there once every few minutes. For sighted people, this is no problem. It does proposes a big problem for visually handicapped people, since they cannot see which bus is where. A possible solution could be to develop a connection between the blind user and the different busses. A similar connection has been made in Vienna, where POPTIS helps the visually handicapped to know which vehicle is incoming at their stop. When they hear a vehicle approaching, they need to turn on their remote, which then emmits a signal. When the vehicle picks up this signal, it sends the information about which line it is and where it is heading to the remote, which then gives this information to the user through audio feedback. [53] POPTIS is a good example of the connection made between users and the vehicles. However, at a station like Eindhoven this could impose problems since there will be multiple busses incoming. Therefore, it is proposed to develop a system where the blind user can look up which vehicle they need to take to reach their destination. They can then fill in the line number in their device. Once this line number is at their station, or approaches it, the device will provide the user with auditorily instructions as to where this bus is. This solution would help visually handicapped users in finding where their correct line is, and improves their independance since they will no longer need to ask it every time they want to take a bus at a bigger station.

Train Door Position

One potential problem we expect visually impaired people to have is difficulty locating the position of train doors when a train arrives. There is often a relatively small time window to get on a train, and we suspect visually impaired people may have trouble finding a door in time. This might be solved by having the doors emit a disticnt sound, though this might become very overwhelming among the general noise of a trains station. It could also be possible to facilitate markers or signals, either on the ground or otherwise, ahead of time to indicate where the train doors are/are going to be. It might be possible do accurately determine where the train doors end up by finely regulating the arrival of a train. The markers could be set, although that would require a standardized train/wagon length, as well as a set distance between the doors. Since this currently is not the case, it is probably more interesting to look at a more flexible solution. It might be possible to set up virtual markers that can communicate with the phone of the visually impaired, to avoid overwhelming travellers with sound. This might be done by measuring the signal strength of the marker.

Checking in

On the station and in buses there are placed where you have to hold your OV-card and then you can check in or check out. This however is a lot more tricky for blind/visually impaired people. At this moment they need help from other people or from a dog to help them to find these check in places. Furthermore the check-in places make a sound when the check-in/out is registered, to let the user know he is checked in/out. However these sounds are not always very loud and very deceptive to noise from the environment. Thus it is also a problem for blind/visually impaired to know if they have checked in. So a suggestion to decrease this problem is to create a device which does not use sound but rather uses vibration/shocks to communicate with the user that he/she is checked in. This device could for example be a arm bracelet. It was researched that vibration/shocks are way more reliable when it comes to communication. People react way faster to these kinds of feedback in contrast with sound. Now the problem remains to find the check in places. One option could be to create an device which starts to vibrate/ give a shock when it is pointed towards one of these check-in places. It then could also increase it's vibration when the user is closer towards the check in place. This way the visually impaired user can be guided towards the check-in place. This device should be able to detect this check in place and maybe like within 3 meters of the check in place it could start vibrating. The problem with this is that when you go towards a train station there are most of the time multiple check in places next to each other. We therefore should make the device in such a way that it only approaches the closest one. So the device should be able to receive multiple signals and has to do some calculations to determine which of these signals is closest and then guide the user towards that place.

Approach

At the end of the course and project, we want to deliver at least a design of the technology that will help visually impaired people travel with public transport. If there is enough time, we might make a (non-functional) prototype of the eventual design. We will start with looking at the user. To do this, we will approach several groups that have some sort of connection to visually impaired people for example a talk group. We will ask questions to our target audience and from the answers they will give us, we will design a system that will solve their problems. In the time that we wait for the user groups to answer our attempt at contact, we will look if we can identify certain problems ourselves. And if there is limited or no response, we will continue working on these problems. But we of course hope to involve real users as much as possible along the process of creating our final product. Then, the rest of the time will be spend on defining the concrete problem, designing a solution, making a prototype, (hopefully) doing user tests and revising.

Deliverables

As deliverables we will provide this wiki which documents our project. This will contain the design for our product concept, as well as the literature study that backs it up.

Objectives

Primary Objectives: Must have Secondary Objectives: Should have Tertiary Objectives: Can have
  • Increase mobility
  • The design must be safe for the user
  • Communication medium to interact with the user
  • Powersource
  • Companionship
  • Dog-like shape
  • Adaptability
  • Machine learning
  • Not expensive

Milestones

As our milestones we have the following:

  • Must have features are researched, including ethical research where appropriate
  • Should have features are researched, including ethical research where appropriate
  • Can have features are researched, including ethical research where appropriate
  • USE analysis completed
  • Cost analysis completed
  • All features combined in one product
  • Product has a final (visual) design
  • Discussion about this product completed

Following these milestones, we believe we have made an effective planning that will allow us to finish this project in a timely fashion.

Planning

Week What to do Person(s)
3
  • Monday meeting
  • Working on the must have Mobility
  • Working on the must have Safety
  • Working on Powersource, batterylife
  • Working on the must have communicating
  • Preparing second tutor meeting
  • All
  • Jan
  • Lotte, Sander
  • Timon
  • Piers
  • All
4
  • Tutor meeting 2
  • Review of previous week
  • Look at what everyone has done
  • Choosing which development method we choose for must haves
  • Change planning
  • Work on should have: Companionship
  • Work on should have: Shape
  • Work on should have: Adaptability
  • Prepare tutor meeting 3
  • All
  • All
  • All
  • All
  • Jan
  • Lotte, Timon
  • Sander
  • Piere, Jan
  • All
5
  • Tutor meeting 3
  • Review of previous week
  • Finalize the combination of technologies
  • Work on the can have: Machine learning
  • Work on the can have: Cheap
  • Work on the appearance, visual
  • Prepare tutor meeting 4
  • All
  • All
  • All
  • Jan, Timon
  • Lotte
  • Sander, Piers
  • All
6
  • Tutor meeting 4
  • Review of previous week
  • Finalize the complete technological design of product
  • Work on visual appearance
  • Design it in 3D software
  • Work on use analysis
  • Prepare tutor meeting 5
  • All
  • All
  • All
  • Jan, Sander, Lotte
  • Timon
  • Piere
  • All
7
  • Tutor meeting 5
  • Review of previous week
  • Write the discussion
  • Write ethical part
  • Finish Cost analysis
  • Prepare tutor meeting 6
  • All
  • All
  • Lotte, Piers
  • Jan
  • Sander, Timon
  • All
8
  • Tutor meeting 6
  • Review of previous week
  • Write presentation
  • Prepare presentation
  • Prepare tutor meeting 7
  • All
  • All
  • Jan, Lotte, Sander
  • Timon, Piers
  • All

References

  1. https://www.houddelijnvrij.nl/
  2. NOS. (z.d.). Een simpele treinreis is voor veel blinden een hindernisbaan. Geraadpleegd op 9 mei 2019, van https://nos.nl/artikel/2280245-een-simpele-treinreis-is-voor-veel-blinden-een-hindernisbaan.html
  3. Cully, A., Clune, J., Tarapore, D., & Mouret, J. (2015, May 28). Robots that can adapt like animals. Retrieved May 3, 2019, from https://www.nature.com/articles/nature14422
  4. Miklosi, A., Korondi, P., Matellan, V., & Gacsi, M. (2017, June 9). Ethorobotics: A New Approach to Human-Robot Relationship. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465277/
  5. V. Kulyukin, C. Gharpure, J. Nicholson, G. Osborne, Robot-assisted wayfinding for the visually impaired in structured indoor environments, https://link.springer.com/content/pdf/10.1007/s10514-006-7223-8.pdf
  6. Liu, J., Tan, M., & Zhao, X. (2007). Legged robots — an overview. Transactions of the Institute of Measurement and Control, 29(2), 185–202. https://doi.org/10.1177/0142331207075610
  7. H. Nguyen, C. C. Kemp, Bio-inspired Assistive Robotics: Service Dogs as a Model for Human-Robot Interaction and Mobile Manipulation, https://smartech.gatech.edu/bitstream/handle/1853/37366/biorob08_canine.pdf
  8. Bourbakis, N. (2008). Sensing Surrounding 3-D Space for Navigation of the Blind. IEEE Systems https://ieeexplore-ieee-org.dianus.libr.tue.nl/stamp/stamp.jsp?tp=&arnumber=4435653
  9. Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167
  10. Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498
  11. Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588
  12. Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706
  13. S. MacNamara, G.Lacey. A smart walker for the frail visually impaired https://ieeexplore.ieee.org/abstract/document/844786/authors#authors
  14. Iwan Ulrich and Johann Borenstein, Member, IEEE. The Guidecane - Applying Mobile Robot Technologies to Assist the Visually Impaired http://www-personal.umich.edu/~johannb/Papers/paper72.pdf
  15. Tachi, S., & Komoriya, K. (z.d.). Tachi_Lab - Guide Dog Robot (MELDOG)https://tachilab.org/projects/meldog.html
  16. Banks, M. R., Willoughby, L. M., & Banks, W. A. (2008). Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 9(3), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007
  17. Winkle, M., Crowe, T. K., & Hendrix, I. (2011). Service Dogs and People with Physical Disabilities Partnerships: A Systematic Review. Occupational Therapy International, 19(1), 54–66. https://doi.org/10.1002/oti.323
  18. Arnold, T., & Scheutz, M. (n.d.). The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/29182090
  19. K. Dautenhahn, S. Woods, C. Kaouri. M. L. Walters, K. L. Koay, I. Werry What is a Robot Companion - Friend, Assitant or Butler, https://uhra.herts.ac.uk/bitstream/handle/2299/7119/901108.pdf?sequence=1&isAllowed=y
  20. Al-Halhouli, A. (n.d.). LEGO Mindstorms NXT for elderly and visually impaired people in need: A platform. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/26835733
  21. Dong, H., & Ganz, A. (n.d.). Automatic generation of indoor navigation instructions for blind users using a user-centric graph. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/25570105
  22. Kulkarni, A., Wang, A., Urbina, L., Steinfeld, A., & Dias, B. (2016). Robotic assistance in indoor navigation for people who are blind. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), . https://doi.org/10.1109/hri.2016.7451806
  23. Mori, H., & Kotani, S. (1998). Robotic travel aid for the blind: HARUNOBU-6. In European Conference on Disability, Virtual Reality, and Assistive Technology.
  24. Lacey, G., & Dawson-Howe, K. (1997, July). Evaluation of robot mobility aid for the elderly blind. In Proceedings of the Fifth International Symposium on Intelligent Robotic Systems (p. 25).
  25. Miklosi, A., Korondi, P., Matellan, V., & Gacsi, M. (2017, June 9). Ethorobotics: A New Approach to Human-Robot Relationship. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465277/
  26. H. Nguyen, C. C. Kemp, Bio-inspired Assistive Robotics: Service Dogs as a Model for Human-Robot Interaction and Mobile Manipulation, https://smartech.gatech.edu/bitstream/handle/1853/37366/biorob08_canine.pdf
  27. Banks, M. R., Willoughby, L. M., & Banks, W. A. (2008). Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 9(3), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007
  28. Winkle, M., Crowe, T. K., & Hendrix, I. (2011). Service Dogs and People with Physical Disabilities Partnerships: A Systematic Review. Occupational Therapy International, 19(1), 54–66. https://doi.org/10.1002/oti.323
  29. K. Dautenhahn, S. Woods, C. Kaouri. M. L. Walters, K. L. Koay, I. Werry What is a Robot Companion - Friend, Assitant or Butler, https://uhra.herts.ac.uk/bitstream/handle/2299/7119/901108.pdf?sequence=1&isAllowed=y
  30. Arnold, T., & Scheutz, M. (n.d.). The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/29182090
  31. Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167
  32. Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498
  33. Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588
  34. Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706
  35. V. Kulyukin, C. Gharpure, J. Nicholson, G. Osborne, Robot-assisted wayfinding for the visually impaired in structured indoor environments, https://link.springer.com/content/pdf/10.1007/s10514-006-7223-8.pdf
  36. Bourbakis, N. (2008). Sensing Surrounding 3-D Space for Navigation of the Blind. IEEE Systems https://ieeexplore-ieee-org.dianus.libr.tue.nl/stamp/stamp.jsp?tp=&arnumber=4435653
  37. Dong, H., & Ganz, A. (n.d.). Automatic generation of indoor navigation instructions for blind users using a user-centric graph. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/25570105
  38. Kulkarni, A., Wang, A., Urbina, L., Steinfeld, A., & Dias, B. (2016). Robotic assistance in indoor navigation for people who are blind. 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), . https://doi.org/10.1109/hri.2016.7451806
  39. Cully, A., Clune, J., Tarapore, D., & Mouret, J. (2015, May 28). Robots that can adapt like animals. Retrieved May 3, 2019, from https://www.nature.com/articles/nature14422
  40. Liu, J., Tan, M., & Zhao, X. (2007). Legged robots — an overview. Transactions of the Institute of Measurement and Control, 29(2), 185–202. https://doi.org/10.1177/0142331207075610
  41. S. MacNamara, G.Lacey. A smart walker for the frail visually impaired https://ieeexplore.ieee.org/abstract/document/844786/authors#authors
  42. Iwan Ulrich and Johann Borenstein, Member, IEEE. The Guidecane - Applying Mobile Robot Technologies to Assist the Visually Impaired http://www-personal.umich.edu/~johannb/Papers/paper72.pdf
  43. Tachi, S., & Komoriya, K. (z.d.). Tachi_Lab - Guide Dog Robot (MELDOG)https://tachilab.org/projects/meldog.html
  44. Al-Halhouli, A. (n.d.). LEGO Mindstorms NXT for elderly and visually impaired people in need: A platform. - PubMed - NCBI. Retrieved May 3, 2019, from https://www.ncbi.nlm.nih.gov/pubmed/26835733
  45. Mori, H., & Kotani, S. (1998). Robotic travel aid for the blind: HARUNOBU-6. In European Conference on Disability, Virtual Reality, and Assistive Technology.
  46. Lacey, G., & Dawson-Howe, K. (1997, July). Evaluation of robot mobility aid for the elderly blind. In Proceedings of the Fifth International Symposium on Intelligent Robotic Systems (p. 25).
  47. Volksgezondheidenzorg https://www.volksgezondheidenzorg.info/onderwerp/gezichtsstoornissen/cijfers-context/prevalentie-incidentie#!node-aantal-mensen-met-gezichtsstoornissen
  48. Bartiméus. (2019, 16 mei). Bartiméus, voor mensen die slechtziend of blind zijn.. Geraadpleegd op 9 mei 2019, van https://www.bartimeus.nl/
  49. Visio. (z.d.). Koninklijke Visio - Expertisecentrum voor slechtziende en blinde mensen - Blindeninstituut - Koninklijke Visio. Geraadpleegd op 9 mei 2019, van https://www.visio.org/home/
  50. Raaijmakers, A. (z.d.). Zichtbaar! Veldhoven. Geraadpleegd op 9 mei 2019, van https://www.zichtbaarveldhoven.nl/
  51. Enquête https://docs.google.com/forms/d/e/1FAIpQLSca3WMyHYoyTtGg35x1-Kff8mvmvuEprm3tU7IiqkofIPZsHA/viewform
  52. MuZIEum. (z.d.-b). MuZIEum | Het ervaringsmuseum over zien en niet zien. Geraadpleegd op 9 mei 2019, van https://muzieum.nl/
  53. Markiewicz, M., & Skomorowski, M. (2010). Public Transport Information System for Visually Impaired and Blind People. Communications in Computer and Information Science, 271–277. https://doi.org/10.1007/978-3-642-16472-9_30