PRE2018 3 Group6: Difference between revisions
Line 22: | Line 22: | ||
Humans in a warehouse feel anxiety, because they are not certain how a robot will act, or about what a robot is doing. | Humans in a warehouse feel anxiety, because they are not certain how a robot will act, or about what a robot is doing. | ||
* Can a vocal queue help reduce the anxiety people feel towards these robots? | |||
** Do certain accents such as polish or Hungarian have an effect on this reduction? If so what effect? | |||
** Does the type of voice have influence? That is a more human like voice or a full on (Steven Hawking) robot voice. | |||
== Users == | == Users == |
Revision as of 13:44, 24 February 2019
Group members
Name | ID |
---|---|
Pim van Berlo | 0957823 |
Timo Boer | 0965729 |
Charlotte Bording | 1246089 |
Luuk Roozen | 0948743 |
Panagiotis Kyriakou | 1256416 |
Problem statement
How can the uncertainty humans have about robots actions be reduced, using vocal queues.
Humans in a warehouse feel anxiety, because they are not certain how a robot will act, or about what a robot is doing.
- Can a vocal queue help reduce the anxiety people feel towards these robots?
- Do certain accents such as polish or Hungarian have an effect on this reduction? If so what effect?
- Does the type of voice have influence? That is a more human like voice or a full on (Steven Hawking) robot voice.
Users
Process line operators
What do the users require?
- users require
- efficiency
- worth of their work
- safety
- robots doing tedious tasks
- time to adapt
- absence of stress
- understandable robots
- Do not require:
- losing their job
- make working with a robot less efficient
- annoying robot
Approach
A qualitative design research.
Trough literature we will broaden our scope of topic. We will look into related work and based on that create a prototype that can give us more knowledge of the issue we are looking into. We will test the prototype on an small group of people(6 to 8) and will evaluate it with them very thoroughly. The results will be analyzed and based on the results together with the literature we will create a discussion and conclusion.
Milestones
- writing introduction,
- prototype finished
- user-test and/or user interview
- using and analyzing results of user-test
- finalizing report - conclusion
- creating presentation
Deliverables
wiki (report)
Final presentation
Interviews
Interview with Margot Neggers (transcript)
Interview with Jilles Smids (not done yet)
Who does what
- everybody works on writing report
- Charlotte(Industrial design) --> Can do user tests, can help create prototypes.
- Luuk(Web science) --> Can analyze test data, if it is available. Can code for the prototype.
- Timo(Software Science) --> Can also analyze test data, if it is available. Can code for the prototype.
- Pim (Electrical Engineering)
Report
Abstract
Introduction(draft)
Industrial robots are taking over more and more tasks in the workforce. Where there were 1.2 million Industrial Robots around the world, there were 1.9 million in 2017 (West, D. M. (2015). The kind of tasks are usually very repetitive (Tamburrini, G. ,2019), jobs that can be seen as very soul-sucking. The robots are making the process faster and cheaper. For example, robots can work 24 hours a day without getting tired. Robots will take in more space in the workforce, robots are getting smarter, cheaper and are starting to take over more complex tasks (West, D. M. (2015). The transition to robot co-workers can often bring troubles due to the human resistance of robots like humans having trouble understanding the robot, the robot working in a different pace (Weiss, A., et al. 2016) or the fear of being replaced by the robot.(Salvini, P. et al. 2010).
In this research we are looking at creating a more efficient and pleasant transition for the human co-workers by giving the robot a human aspect. It will be tested if a voice, and certain usages of the voice can create more trust and understanding of the robot and therefore less resistance. In a study done by Sauppé, A., et al It is already shown how giving the robot eyes can make its functions clearer for humans (2015). Peoples jobs often change due to the introduction of a robot in their work (Salvini, P. et al. 2010). An application of the voice could be explaining the new tasks in a suitable way. This research will mainly focus on industrial robots in warehouses as this is a very common place where robots are taking over tasks(..., ….)
Citation
Tamburrini, Guglielmo. (2019). Robot ethics: a view from the philosophy of science.
Weiss, A., & Huber, A. (2016). User Experience of a Smart Factory Robot: Assembly Line Workers Demand Adaptive Robots. In AISB2016: Proceedings of the 5th International Symposium on New Frontiers in Human-Robot Interaction.
Sauppé, A., & Mutlu, B. (2015, April). The social impact of a robot co-worker in industrial settings. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 3613-3622)
West, D. M. (2015). What happens if robots take the jobs? The impact of emerging technologies on employment and public policy. Centre for Technology Innovation at Brookings, Washington DC.
Salvini, P., Laschi, C., & Dario, P. (2010). Design for acceptability: improving robots’ coexistence in human society. International journal of social robotics, 2(4), 451-460.
Related work
In the introduction saw that there is not just an increase in the amount of robots, but also in the difficulty of the tasks they perform. In this section we will cover some of the many works that relate to the problems emerging from these increases. We will also cover research that has been done to specific aspects of our problem.
One of these papers focusses specifically on how helpful vocal interaction can be in learning. In the paper “Effects of voice-based synthetic assistant on performance of emergency care provider in training”[1] the researchers measure whether a person can learn how to provide emergency care more quickly if it receives assistance from a voice-based synthetic assistant. This research paper is related to our work in that it shows that a vocal stimulant can help people in situations that are normally difficult for them to deal with. Giving us an indication that our research might result in a positive outcome.
Another paper that is related to ours is the paper called “Intelligent agent supporting human-multi-robot team collaboration”[2]. This paper gives an in-depth explanation of how an intelligent agent can help humans in their collaboration with robots. This article is especially interesting since one of the scenarios they focus on is warehouses. In this scenario the intelligent agent suggest possibly difficult situations for robots, such as a box that has fallen. The human can then judge whether this hinders the robots or not, and possibly change the robots behavior based on this. At some point the paper discusses whether the human found these suggestions helpful or annoying. Another paper that writes about a robot giving feedback to humans is the paper “Inspector Baxter: The Social Aspects of Integrating a Robot as a Quality Inspector in an Assembly Line”[6]. However this paper focusses on the influence movement and facial expressions can have on the social interaction.
The paper “The Social Impact of a Robot Co-Worker in Industrial Settings”[3], gives a discussion of the social phenomena that emerge when a robot co-worker is introduced in an industrial environment. It does this by discussing the relationship that each employee developed with the robot. In the end it suggests some improvements for future robot implementations that would improve further social interactions. This article relates to our problem in that it discusses the problem but in a broader sense. I.e. not focusing on a specific solution. An paper called “Ripple effects of an embedded social agent: A field study of a social robot in the workplace”[4] also discusses these social phenomenon that emerge in a human-robot cooperative industrial environment. However the robots in this paper perform the same basic tasks as the robots in a warehouse. I.e. picking up goods and delivering them to people.
One paper that we found tries to show the importance of movement in the social interaction between human-robot interaction. As cited “they [robots] also need the ability to model and reason about human activities, preferences and conventions. This knowledge is fundamental for robots to smoothly blend their motions, tasks and schedules into the workflows and daily routines of people. We believe that this ability is key in the attempt to build socially acceptable robots for many domestic and service applications”[5] This relates to our work, because it indicates a variable we need to keep track off.
[1] Damacharla, P., Dhakal, P., Stumbo, S., Javaid, A., Ganapathy, S., Malek, D., . . . Devabhaktuni, V. (2019). Effects of voice-based synthetic assistant on performance of emergency care provider in training. International Journal of Artificial Intelligence in Education : Official Journal of the International Aied Society,29(1), 122-143. doi:10.1007/s40593-018-0166-3 [2] Rosenfeld, A., Agmon, N., Maksimov, O., & Kraus, S. (2017). Intelligent agent supporting human-multi-robot team collaboration. Artificial Intelligence, 252, 211-231. doi:10.1016/j.artint.2017.08.005. [3] Allison Saupp´e, Bilge Mutlu, The Social Impact of a Robot Co-Worker in Industrial Settings, Department of Computer Sciences, University of Wisconsin
[4] Min Kyung Lee, Sara Kiesler, Jodi Forlizzi, Paul Rybski, Ripple Effects of an Embedded Social Agent: A Field Study of a Social Robot in the Workplace, Human-Computer Interaction Institute , Robotics Institute, Carnegie Mellon University, Pittsburgh USA
[5] Gian Diego Tipaldi, Kai O. Arras, Planning Problems for Social Robots, Social Robotics Lab Albert-Ludwigs-University of Freiburg [6] Amy Banh , Daniel J. Rea , James E. Young , Ehud Sharlin, Inspector Baxter: The Social Aspects of Integrating a Robot as a Quality Inspector in an Assembly Line, Proceedings of the 3rd International Conference on Human-Agent Interaction, October 21-24, 2015, Daegu, Kyungpook, Republic of Korea
Method
Results
Discussion/Conclusion
SotA
Pim
The Human Side of Robotics: How Worker's React to a Robot http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.3947&rep=rep1&type=pdf
Short Summary: An research from 30 years ago that should give a good insight on how expectations match what actually happened. Focusing on the working with robots and the dangers that emerge from it being unsafe.
Toward Safe Close-Proximity Human-Robot Interaction with Standard Industrial Robots
https://dspace.mit.edu/handle/1721.1/106035#files-area
Short Summary: Increasing HRI in the industry will make people work in close-proximity to industrial robots. This article continues on how to make an Industrial robot better for close-proximity interaction.
Robot ethics: Mapping the issues for a mechanized world
https://ac.els-cdn.com/S0004370211000178/1-s2.0-S0004370211000178-main.pdf?_tid=4b18b191-4efd-4bf0-a9e3-526f16e94091&acdnat=1549713537_b2857f75deb01b6954139886023ad36cShort
Summary: This paper focusses on the ethics of robotics in mainly computers and industrialization and how it intervenes with human jobs
Robot Ethics: A View from the Philosophy of Science
short Summary: This paper mentions the factory workers working together with humans and collisions that arise (including robots hurting factory workers and the other way around)
Ethics by Design: A Conceptual Approach to Personal and Service Robot Systems
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.3665&rep=rep1&type=pdf
Short Summary: Robots in factories are different from what we should have on a day-to-day basis but working together on the same work floor states safety can become an issue. It explores factories a several other work-related robots.
ROBO-PARTNER: Seamless Human-Robot Cooperation for Intelligent, Flexible and Safe Operations in the Assembly Factories of the Future
Short Summary: This article takes an Industry related issue and tries to solve it. Explaining how effective robot-human interaction takes place.
Luuk
Human-robot interaction in rescue robotics https://ieeexplore-ieee-org.dianus.libr.tue.nl/document/1291662
Short Summary: This paper gives an overview about how robots are present at multiple levels of a rescue process. They can help during the search, but also by giving information about an environment that is hard to access by normal people.
Human-Robot Interaction: Issues in the Design of Interfaces for Work in Distant Environments https://journals-sagepub-com.dianus.libr.tue.nl/doi/pdf/10.1177/154193120905300401
Short Summary: This paper talks about the importance of interfaces. They should be simple enough such that they are self-explanatory. However they should also cover all functionality.
Robots in the workplace: Threat or opportunity? https://search-proquest-com.dianus.libr.tue.nl/docview/1807429396
Short Summary: This paper talks about how robots are not as bad as you might think. They do not just cost jobs, but they also create them. And most jobs that are covered by robots, are simple but tedious jobs.
Robots and Machine Vision in Packaging https://doi.org/10.1108/eb004402
Short Summary: This paper talks about how robots help people in the workplace by doing tedious tasks. It describes the robots as “The new robot is a smart, fast, pick‐and‐place device which frees workers to do other tasks.”
People Meeting Robots in the Workplace https://ieeexplore-ieee-org.dianus.libr.tue.nl/stamp/stamp.jsp?tp=&arnumber=5481097
Short Summary: This paper mentions how robots can be used to interact with people. It mentions how it is important for robots to be seen as social. If it is seen as annoying people will not use it no matter how handy it can be. However it is seen as a social creature, people might look past its flaws and actually care for it.
HUMAN-ROBOT FACTORS: ROBOTS IN THE WORKPLACE https://journals-sagepub-com.dianus.libr.tue.nl/doi/pdf/10.1177/154193120605000902
Short Summary: This article describes how robots can help make the workplace better, by doing tedious tasks, it also describes what are important factors in robot acceptance. Such as their ability to do task that are to dangerous for humans, and about how important expectations about this robot are in acceptance.
Charlotte
Weiss, A., & Huber, A. (2016). User Experience of a Smart Factory Robot: Assembly Line Workers Demand Adaptive Robots. In AISB2016: Proceedings of the 5th International Symposium on New Frontiers in Human-Robot Interaction. https://arxiv.org/ftp/arxiv/papers/1606/1606.03846.pdf
Short Summary:
The goal was to find out what kinds of suggestions the assembly line workers – who actually use the new robotic system – propose in order to improve the human-robot interaction the cooperation with a robot that executes predefined working steps actually impedes the user in terms of flexibility and individual speed. that cooperative robots in a dynamic factory context have to adapt to their human co-workers by taking their individual working steps and speed into account.
Buchner, R., Wurhofer, D., Weiss, A., & Tscheligi, M. (2013). Robots in time: How user experience in human-robot interaction changes over time. In Proceedings of ICSR2013, pp. 138-147. https://link.springer.com/chapter/10.1007/978-3-319-02675-6_14
Short Summary:
Our results show an increasing positive UX towards the newly deployed robots with progressing time
Obrist, M., Reitberger, W., Wurhofer, D., Förster, F., Tscheligi, M.: User experience research in the semiconductor factory: A contradiction? In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 144–151. Springer, Heidelberg (2011) https://link.springer.com/content/pdf/10.1007%2F978-3-642-23768-3_12.pdf
Short Summary:
(1) Investigate user experience of workers within the factory context. (2) Apply a creative approach, inspired by probing, which is applicable for this context in order to investigate workers’ experiences. on the interaction and user experience (UX) in factories, The results showed that the absence of stress significantly contributes to a perfect working day and that the end of a shift is experienced as the most stressful part of the daily working routine, as this is the most critical point of time for a fluent working process.
Brogårdh, T. (2007). Present and future robot control development—An industrial perspective. Annual Reviews in Control, 31(1), 69-79. https://www.sciencedirect.com/science/article/pii/S1367578807000077
Short Summary:
One scenario is that light-weight robot concepts could have an impact on future car manufacturing and on future automation of small and medium size enterprises (SMEs). Such a development could result in modular robots and in control schemes using sensors in the robot arm structure, sensors that could also be used for the implementation of redundant safe control. Introducing highly modular robots will increase the need of robot installation support,
Sauppé, A., & Mutlu, B. (2015, April). The social impact of a robot co-worker in industrial settings. In Proceedings of the 33rd annual ACM conference on human factors in computing systems (pp. 3613-3622). ACM. https://dl.acm.org/citation.cfm?id=2702181
Short Summary:
workers relate to the robot as a social entity and rely on cues to understand the robot's actions, which we observed to be critical for workers to feel safe when near the robot.
Orendt E.M., Henrich D. (2018) An Architecture for Intuitive Programming and Robust Execution of Industrial Robot Programs. In: Schüppstuhl T., Tracht K., Franke J. (eds) Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg
Short Summary:
Intuitive robot programming and robust task execution. Our architecture enables users to create robot programs by guiding a robot kinesthetically through tasks.
(Dauth, W., Findeisen, S., Südekum, J., & Woessner, N. (2017). German robots-the impact of industrial robots on workers.)
Timo
Robots in Society, Society in Robots
https://link.springer.com/article/10.1007/s12369-010-0066-7
An analysis of human robot interaction and how they are influenced by social and cultural factors. And describes a range of methodologies and design that support a socially robust understanding of technological development/robots
Robot ethics, The ethical and Social Implications of Robotics
An extensive ethical analysis of most branches of robotics. States that human-robot interaction would benefit greatly if robots could express emotions to humans and read emotions shown by humans.
Artificial intelligence and robotics and their impact on the workplace
100+ pages of the effects of robots in the private sector containing: new forms of employment: an analysis of new employment possibilities created by automatization health and safety issues: The interaction between employees and robots and how this will need to change The Impact of New Technology on the Labour Market: A analysis of the jobs that are endangered by automatization and jobs that become more important because of automatization.
Robot ethics: A view from the philosophy of science
This paper analyses the effect of the need for a reduced work force (by automatization). And in particular how people outside the workforce for a lengthy period of time are going to get social benefits as these are usually obtained though employment.
Experimental investigation into influence of negative attitudes toward robots on human–robot interaction
http://rins.st.ryukoku.ac.jp/~nomura/docs/FormalPaper.pdf
A paper exploring the correlation between negative attitudes towards robots and their behavior toward robots. Where they found a gender difference within both negative attitudes towards robots and in the relation between negative attitudes towards robots and their behavior toward robots.
Robots in Time: How User Experience in Human-Robot Interaction Changes over Time
https://link.springer.com/chapter/10.1007/978-3-319-02675-6_14
An analysis of how employees experience their robotic colleagues in a study over time. (week, six months and 1.5 years after implementation of the robot)