PRE2018 3 Group17: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 112: Line 112:


== literature study/state of the art ==
== literature study/state of the art ==
==== Flood-survivors detection using IR imagery on an autonomous drone ====
https://pdfs.semanticscholar.org/048c/3193942a9fa6aa416b669b9a3dc72167ab2b.pdf<br>
====Autonomous drones for assisting rescue services within the context of natural disasters====
====Autonomous drones for assisting rescue services within the context of natural disasters====
https://ieeexplore.ieee.org/abstract/document/6929384<br>
https://ieeexplore.ieee.org/abstract/document/6929384<br>

Revision as of 21:05, 13 February 2019

Group members

Group Members Student nr.
Diederik Geertsen 1256521
Cornelis Peter Hiemstra 0958497
Joël Peeters 0939193
Benn Proper 0959190
Laila Zouhair 1260529

Ideas

  • Omnidirectional 3D printer
  • Breakfast bot
  • Robot to remove microplastics from water
  • Clothes folding robot
  • Building guidance robot
  • Disaster observation drones

Disaster observation using a network of drones

Problem statement and objectives

The search for survivors after disasters such as floods and earthquakes is an extremely time sensitive matter. Fast localisation and retrieval of victims is essential for increasing surviving chances, which creates an obvious application for automated systems.

The main goal of the design is to be able to identify the high priority zones following a natural disaster. These high priority zones could for example be the area with the highest density of survivors, or locations which are the easiest to reach for emergency services. The system should also plot the most efficient and safest route that can then be used by emergency services to quickly reach the survivors. This solution should ideally be deployed as fast as possible to provide a detailed overview of the situation the first moments after disaster struck. It should also be applicable in a large range of natural disasters, these should take into account the varying conditions of different disasters, for example the system should be able to deal with bad weather, rough terrain, high temperatures etc.

Users

What do the users require

Our users require a way to quickly get information about a large disaster. This would mean that we must automate this information gathering on different scales. The users have the problem that they cannot get to a disaster quick enough, and when they are at the disaster, they cannot get information quick enough because of the scale. For example, when there is a very large earthquake. The emergency services have no good way to get to the disaster, they do no immediately know the scale of the disaster and they do not know which parts really require there attention. This all costs much time, which can be greatly reduced. To get all this information really quickly, sometimes they use drones. These are manual controlled. This means that they can only gather information at as many places as they have people available. If we can make the robots independent and automated, while communicating with each other and giving important information to the users, this process would become much faster.


Who are the stakeholders?

There are different stakeholders with different roles in this project involved. They would all take advantage of a solution we provide to their problem. The three stakeholders are Users, Society and Enterprise. We will describe per category why this particular stakeholder is involved into our problem and how our project will contribute to a solution for their problems.

Users

The biggest group of stakeholders are the users, which consists of civilians, government organizations, and private organizations or non-government organizations. These would all take advantage of the solution we provide, in particular those which are our intended end-user, i.e. the groups which will be involved during a natural disaster. We shall describe how these groups use our solution

  • Government Organizations

Organizations formed by the government to combat natural disasters will take the most advantage from our solution. When a natural disaster will take place on large scale, emergency services or other organizations want to gather information as quick as possible. With our solution, this will become automated and much quicker.

  • Civilians

Civilians struck by natural disasters benefit from our solution. The quicker help comes, the smaller problems arising for civilians will be. This counts for medical care, but also search and rescue and preventing loss of private property.

  • Private organizations/non-government organizations

Organizations could also use our solution to work for different purposes. For example as security of property. Next to that, our solution to the described problem could be used as a good solution for similar problems as government organizations are describing.

Society

The society in a whole would benefit greatly from our solution. Our solution is relative cheap, and would be a great addition or replacement to existing solutions. Our solution would contribute to prevent loss of life, loss of property and would help organizations greatly. Next to that, since it is not a expensive solution, it would be much more cost effective than existing solutions such as the manual controlled drone.

Enterprise

The enterprise would also benefit from our solution. Firstly, the usage of drones would be far greater than before. This would mean that enterprises could cash in into our solutions.

Approach and deliverables

In order to complete the project, first, a thorough literature study will be conducted that will be used to determine the state-of-the-art regarding drone technology as well as their current use in natural disasters and regarding the current other methods of observation during natural disasters and the problems and restrictions associated with these methods. Based on this information, an optimal observation strategy for a certain set of defined scenario's will be designed, based on the abilities of drones and maximizing the amount of new information a single drone can deliver. To provide evidence of the working of this strategy, a simulation will be made that shows how a network of drones would operate in such a disaster area. If enough time is left after these deliverables are finished, a small-scale test setup using a few drones can be used to show the functionality of the network in reality. The final report will exist of a literature study, an explanation of the optimized observation strategy, and the simulation. It will also include an expansive explanation of the choices made during each part of the project.

Milestones

The three main milestones that need to be reached are the finishing of the literature study, the observation strategy and the simulation.

Planning

Week 1

Problem-statement and objectives (Cornelis and Benn)
State-of-art (Every member provides at least five sources)
Users and their requirements (Diederik)
Approach, planning, milestones, and deliverables (Laila and Joël)

Week 2

Updated problem description
Concrete planning for project
Analysis of literature sources
Requirement analysis
USE cases
Task division for the report
Concrete plan

Week 3-6

Plan for the simulation
Dividing the tasks for the simulation
Work on simulation
Checking the RPC’s
Analysis of decisions made for the simulation and update if needed
Update the wiki
Literature study
Work on the report

Week 7

Finalize simulation
Prepare presentation
Finalize the wiki
Finalize the report

Week 8

Presentation
Hand in report


literature study/state of the art

Autonomous drones for assisting rescue services within the context of natural disasters

https://ieeexplore.ieee.org/abstract/document/6929384
This article describes how drones can be used to assist rescue services during a natural disaster.

Autonomous drones for disasters management: Safety and security verifications

https://ieeexplore.ieee.org/abstract/document/7303086
This article describes how the safety and security of usage of drones during operations and flights can be verified.

Help from the Sky: Leveraging UAVs for Disaster Management

https://www.computer.org/csdl/mags/pc/2017/01/mpc2017010024-abs.html
This article presents a vision for future unmanned aerial vehicles (UAV)-assisted disaster management, considering the holistic functions of disaster prediction, assessment, and response.

Unmanned Aerial Vehicles in Response to Natural Disasters

https://www.academia.edu/30915171/Unmanned_Aerial_Vehicles_in_Response_to_Natural_Disasters
This article explores the best usage of emergency drones and tries to provide guidelines to anyone who would like to use UAVs as part of their disaster response activities. Additionally the article points out improvements which could be made in the field of emergency drones.

Drone Applications for Supporting Disaster Management

https://www.researchgate.net/profile/Agoston_Restas/publication/283537233_Drone_Applications_for_Supporting_Disaster_Management/links/5688148e08ae051f9af5b166/Drone-Applications-for-Supporting-Disaster-Management.pdf
This paper evaluates some experiences and describes some initiatives using drones to support disaster management.

Massive MIMO for communications with drone swarms

https://ieeexplore.ieee.org/abstract/document/8214963
The possibility of massive MIMO for communication with drones is illustrated in this article.

Multi-Tier drone architecture for 5G/B5G cellular networks: Challenges, trends, and prospects

https://ieeexplore-ieee-org.dianus.libr.tue.nl/document/8316776
The existing state-of-art innovations in drone networks and drone-assisted cellular networks are reviewed in this article.

Help from the sky : Leveraging UAVs for disaster management

https://ieeexplore-ieee-org.dianus.libr.tue.nl/document/7807176
This article describes a drone-assisted disaster management system, and considers the research challenges and possible solutions for system-specific, security- and energy-related issues.

A decade of research in opportunistic networks : Challenges, relevance, and future directions

https://ieeexplore-ieee-org.dianus.libr.tue.nl/document/7823357
In this article scenarios are described in which the infrastructure is not available, such as during nature disasters.

Spectrum policy challenges of UAV/drones

https://ieeexplore-ieee-org.dianus.libr.tue.nl/document/6940426
In this article the growing interest around drones for military and civil use is described. And the negative consequences of the use of drones are also considered.

Problems of a trajectory planning in autonomous navigation systems based on technical vision and AI

https://ieeexplore.ieee.org/document/8317265
This article mainly talks about the problems that exist when trying to navigate an environment using just vision and AI, it also attempts to give a solution to this problem. It was chosen on the basis that for the planned autonomous system drones are used to navigate the environment. It is therefore important that these drones can navigate the environment themselves. This article is also useful for the idea that the system can plan a route to the survivors based on the images provides by the drones.

Using Autonomous Air Vehicle in DTN Sensor Network for Environmental Observation

https://ieeexplore.ieee.org/abstract/document/6649861
Geologists programmed a drone to autonomously decide a path to use for the observation of an area's geology. The problem is similar to the observation problem tha needs to be solved for our network.

Drone Empowered Small Cellular Disaster Recovery Networks for Resilient Smart Cities

https://ieeexplore.ieee.org/abstract/document/7746806 This article discusses the use of drones to provide cell phone coverage during small-scale disasters. It uses a network of drones to achieve this goal and discusses optimal placement strategies, which can be used as a starting point for the project at hand.

The progress of operational forest fire monitoring with infrared remote sensing

https://link.springer.com/article/10.1007/s11676-016-0361-8
The article discusses the methods used to observe forest fires using infrared cameras and aerial equipment, including drones. Serves as a good summary of the current state-of-the-art of the use of this technology in forest fires.

Ambulance drones

https://www.tudelft.nl/en/ide/research/research-labs/applied-labs/ambulance-drone/
An invention from the Technical University of Delft that uses drones in a more hands-on manner. It shows that drones are very useful in situations where fast responses are needed where manpower is lacking.

Active fire monitoring and fire danger potential detection from space: A review

https://link.springer.com/article/10.1007/s11707-008-0044-7
This article talks about the monitoring of fires from space, which serves as an alternative solution from the usage of drones. Article mentions shortcomings to this solution, which allows the to-be-designed system to be designed to help fill the information gap left by these shortcomings.

A Disaster Response System based on Human-Agent Collectives

https://jair.org/index.php/jair/article/view/11037
This article gives a proposal for a disaster response system that, when combined with rescue personnel, can improve the effectiveness of the rescue operation. This paper can be used to compare our ideas against an already established. This information can then be used to add functions that are not present yet or to improve on the functions that are present using the new information.

Motion planning with temporal-logic specifications: Progress and challenges

https://content.iospress.com/download/ai-communications/aic682?id=ai-communications%2Faic682
Here the concept of time-sensitive decision-making is central. This is essential in a search-and-rescue mission as quick decision making and optimal strategies are important to save as many lives as possible. This article can then figure out a process to incorporate this time-sensitive decision-making system into our system.

Unblinking eyes: the ethics of automating surveillance

https://link.springer.com/article/10.1007/s10676-012-9291-0
This paper talks about the problems that occur when automated surveillance becomes the norm. This might not seem that relevant for our situation, but if one would consider that a search-and-rescue robot that can search for people is the fact that it could also be implemented into general surveillance systems. This could then mean that everyone could be surveilled at any time, combined with the detection of people this could cause an enormous breach in privacy if it were implemented. Careful considerations should be made to prevent this from happening as this could potentially cause a "Big-Brother" type scenario if it were to come to fruition.

Ethical Aspects of Facial Recognition Systems in Public Places

https://www.emeraldinsight.com/doi/pdfplus/10.1108/14779960480000246
Here the idea of facial recognition incorporated in surveillance systems is discussed. This relates back to a previous point about automated surveillance and the prevention of a "Big Brother" scenario. The system used to find people after a natural disaster should never have access to facial recognition, it should only need general recognition of a human to be succesful. If facial recognition were to be added, this would then make it easier to implement this idea into surveillance systems, which is precisely what should be avoided.

Brief analysis of drone swarms communication

https://ieeexplore.ieee.org/document/8278390
This article on optimisation of "many to many" communication, presenting scalable approaches for large drone swarms.

A cloud based autonomous multipurpose system with self-communicating bots and swarm of drones

https://ieeexplore.ieee.org/document/8301781
This article proposes a approach for an aerial drone swarm with many relatively cheap and simple drones with varying tasks and one master drone which controls the swarm and gathers data. This eliminates the need for control from ground level. Suggested applications are in disaster areas like floods and landslides, an in agricultural settings.

Flood-survivors detection using IR imagery on an autonomous drone

https://pdfs.semanticscholar.org/048c/3193942a9fa6aa416b669b9a3dc72167ab2b.pdf
This article introduces an approach to find flood-survivors automatically by employing aerial drones with infrared cameras.

Automatic wireless drone charging station creating essential environment for continuous drone operation

https://ieeexplore.ieee.org/document/7822448
This article proposes a method for wireless charging of drone, specifically quadcopter, batteries for extended or continuous operation time. The article focusses on a landing pad which charges drones by induction, but also considers several other methods such as lasers and solar power.

Post-disaster rescue facility: Human detection and geolocation using aerial drones

https://ieeexplore.ieee.org/document/7848026
This article discusses the implementation of an automated human detection and geolocation system using aerial drones. It considers the use of thermal and optical imagery and minimisation of false positives. It also shows how GPS data can be used effectively.