Embedded Motion Control 2013 Group 8: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 125: Line 125:
== Algorithm ==
== Algorithm ==


====Gapdetection====
'''''Input:''''' Laser_vector[1081]
'''''output:''''' gap location [float x1; float x2; float xm; float y1; float y2; float ym]


A gap is detected by thresholding the derivative of the laser ranges, this derivative is defined as the difference of laser range [i] and [i-1]. If this difference is larger than the threshold, laser range [i] and [i-1] are labeled as gap corners. The function then starts calculating the position of these laser reflection points relative to its own position. The corner closest to the robot is labeled as point1 [x1,y1] and the other as point2 [x2,y2], the function also outputs the euclidean middle of both points [xm,ym].
{|
| [[File:Range_diff_outlier.png|thumb|left|500x250px]]
| [[File:Gap_location_definition.png|thumb|right|500x250px]]
|}


== Simulation results ==
== Simulation results ==

Revision as of 08:47, 27 September 2013

Group members

Name: Student id: Email:
Robert Berkvens s106255 r.j.m.berkvens@student.tue.nl
Jorie Teunissen s102861 j.a.m.teunissen@student.tue.nl
Martin Tetteroo s081356 m.tetteroo@student.tue.nl
Rob Verhaart s080654 r.a.verhaart@student.tue.nl

Tutor

Name: Email:
Rob Janssen r.j.m.janssen@.tue.nl


Minutes


Planning

Week 1 (02-09-2013 - 08-09-2013)
  • Installing software
  • Following tutorials
  • Setup SVN


Week 2 (09-09-2013 - 15-09-2013)
  • Installing Jazz simulator
  • Brainstorm on functions
  • Setting up plan of approach
Martin: Measure middle road driving
Week 3 (16-09-2013 - 22-09-2013)


Week 4 (23-09-2013 - 27-09-2013)
  • September 25th Corridor Challenge


Week 5 (30-09-2013 - 04-10-2013)


Week 6 (07-10-2013 - 11-10-2013)


Week 7 (14-10-2013 - 18-10-2013)


Week 8 (21-10-2013 - 25-10-2013)
  • October 23th Final Challenge

Strategy

Modules:

  • Corridor detection
  • Relative location in corridor
  • map
  • route calculation
  • Speed/angle regulator
  • safety node
  • arrow node

Corridor detection

This function detects all the walls. The walls are outputted as line segments in x,y coordinates.

Input: Laser_vector[1081] output: Vector[Lines], with lines[float x_begin; float y_begin; float x_end; float y_end]

Relative location

This function calculates the distance from the wall on the left and on the right and the angle of the robot towards these walls.

Input: Laser_vector[1081], Vector[Lines] Output: Location_rel[ float Dist_left; float dist_right, int Theta]



Map

Using the results of the previous modules this module will update the current map. The location of the robot and the walls/corners/deadends will be drawn in the map. The starting point of the map (0,0) is the start point of the robot. So every time the map from this point will be calculated. As an improvement a particle filter might be needed to draw a better map.

Algorithm

Gapdetection

Input: Laser_vector[1081] output: gap location [float x1; float x2; float xm; float y1; float y2; float ym]

A gap is detected by thresholding the derivative of the laser ranges, this derivative is defined as the difference of laser range [i] and [i-1]. If this difference is larger than the threshold, laser range [i] and [i-1] are labeled as gap corners. The function then starts calculating the position of these laser reflection points relative to its own position. The corner closest to the robot is labeled as point1 [x1,y1] and the other as point2 [x2,y2], the function also outputs the euclidean middle of both points [xm,ym].

Range diff outlier.png
Gap location definition.png

Simulation results

Experimentation results

Corridor Challenge