PRE2017 1 Groep2: Difference between revisions
Line 75: | Line 75: | ||
==Example== | ==Example== | ||
To make everything more clear what is stated in the above chapters an example will be given. So when a car is driving on the street and a cyclist is bicycling the other way how bright should the streetlight light up? For the car, the streetlights should stay at the same percentage as normal. | |||
=Team Progress= | =Team Progress= |
Revision as of 20:18, 24 September 2017
Group members
- Simon Kok (0850085)
- Xueyuan Chen (0961799)
- Lennart Heijnen (0957658)
- Lisanne Grevinga (0946763)
Project definition
The current street lights are based on a system that is extremely outdated. It is possible to reduce energy consumption by large quantities by changing the entire system. This will not only be good for the environment, but it will also reduce costs over time. By creating a SMART light plan, this all is possible while increasing safety and decreasing light polution. As numerous studies have shown, different lighting conditions influence people greatly. By interpreting the results of those studies, a design will be made. The hypothetical design will be made for the residential area Meerhoven.
Objective
The different stakeholders have different objectives. It is the goal of this project to make a design that satisfies all stakeholders.
- Users: This are the people driving, walking, cycling, etc past the streetlights. Their first priority is safety and visibility.
- Society: The society can be diveded in two groups. First there is the people living in the area. Second is the municipality. For these stakeholders, it is important that it is cheap (in the long term). Other wishes could be the mood set by the lighting.
- Entrepreneurs: This are the people designing and making the SMART streetlights. For the companies, the most important is that they can make profit from the SMART streetlights.
Approach
The approach for this project is to start with literature study, to understand the influence of street lights on the objectives of the stakeholders. This research should also contain the monitoring of crowds. Other than the literature study, stakeholders can be further investigated by speaking with the municipality and with researchers of the TU/e lighting group. With the results of these studies, the design requirements can be made. With these requirements and more study into the technical aspects, a design can be made. Finally a prototype will be build in the form of software.
Research
The first research done is in the form of literature study.
Articles
- Research at the TU/e has shown that pedestrians feel safer when their direct surrounding is lit, in comparison when the areas further away are lit. This is applicible to both females and males. Furthermore, it is the result of both stationary and walking pedestrians.[1]
- Visibility is mostly influenced by contrast. This mostly is problematic when there is oncoming traffic. To have a similar visibility, road lighting should be brighter when there is oncoming traffic. [2]
- Switching off lights in areas in England and Wales did not result in increased crime rates. Even though this study took place in other countries, it does suggest that decreasing light levels in the Netherlands will not increase crime rates either. [3]
- Monitoring people is a sensitive subject. Generally people dislike being monitored, even when the data cannot trace back to the individuals being monitored. [4] Even though this example is using monitoring for commercial ends, it might still be important even when safety is the goal.
Case Studies
- In the city of Los Angeles, 140,000 conventional street lights have been replaced by LED lights. Over the span of a year, these lights consumed 63% less energy. This in addition to higher reliability, reduced operating costs by 40%. In addition, crime rates in the area went down by 10%, though the study doesn't mention how they tested the correlation. It also shows that the lifespan of LED street lights are much higher than that of conventional bulbs, but again, no sources are mentioned.[5]
- Analysis show that over a span of 20 years, approximatly €780 per light can be saved by using a networked LED system. Initial investment costs are high, however, payback time is only 6 years.[6]
Projects in and around Eindhoven
There are different smart streetlighting project in the Netherlands.For example, there is a project at Stratumseind in Eindhoven and one at the Goorloopweg in Helmond. These streets are very different from each other. Stratumseind is a big street in Eindhoven with a lot of bars in it. During the night there are a lot of people and most of these people have had some alcoholic drinks, causing a higher risk of aggression on the street. The project at Stratumseind uses lights to make people less aggressive, by using different colours, brightness and light patterns. [7]. Then the Goorloopweg is a street in a sports park. During the nights it is quiet, mostly deserted and dark, although there are occasional pedestrians, jogging or walking their dog, for example. The streetlights on the Goorloopweg they try to create a safe place for people during the night using sensors. When someone walks by a streetlight, it will shine brighter than when no one is around.
Contacting the TU/e Intelligent Lighting Institute
An email has been sent to Antal Haans of the Intelligent Lighting Institute (ILI). Mr Haans is an expert on lighting and social safety and one of the co-authors of the article Light distribution in dynamic street lighting: Two experimental studies on its effects on perceived safety, prospect, concealment, and escape, which is mentioned above. Additionally, he has worked on experiments with smart lighting systems at Stratumseind and in the Markthal at the TU/e. We aim to interview mr Haans on his work on the subject and his findings, so that we can get a better understanding of the needs of the users for a smart streetlight system.
The meeting will take place Wednesday morning, 20th of september at 11:30.
Scenarios
In the project, a street in the subtown Meerhoven has been chosen. This because it is a big street with were cars come from both directions. Second, there is not a lot of work traffic, but only traffic from the people that live in Meerhoven. In this chapter first a description of the street will be given, then the preferences of the user are given and then an example for different scenarios will be given.
Street Description
For the project, it is good to know what the street looks like. The street is a two-way street, that means that traffic can come from both ways. On the street are two different intersections. The first intersection is a 'normal' intersection where all the traffic (pedestrians, cyclists, cars) can go right, left or straight ahead. The second intersection is an intersection where only the cyclist and pedestrians can go all three directions and cars have to go straight ahead. Then on both sides of the streets are parking spaces and streetlights and cars are allowed to drive 30 [km/h]. Those streetlights are standing fifteen meters apart from each other. And at last on the end of the street, the traffic has to right or left. In FIGURE 1 a scatch of the street is given.
Preference users
In this situation there are three kinds of users:
- The pedestrian
- The cyclist
- Driver of a car
For now, the preference of the pedestrian and the cyclist are the same. A cyclist is seen as a pedestrian that walks really fast.
Pedestrian and cyclist
The preference of the pedestrian and cyclist are different in different situations. There are 3 different situations:
- The pedestrian/cyclist is the only person on the street.
- The pedestrian/cyclist is going to the left and a car is going to the right. That means that they are heading towards each other and have to cross each other on the street
- The pedestrian/cyclist is crossing the street
To begin with the first situation, where the pedestrian/cyclist are alone on the street. Haans de Kort did some research about the preference of a pedestrian walking on the street [8]. The conclusion from this research was that people feel safer when there are surrounded by light rather than that there is light in front of them. So for this situation, the streetlights around the pedestrian/cyclist should be turned on and most important the one that is the closest to the pedestrian/cyclist should have to most brightness.
The second situation is about a car coming towards the pedestrian/cyclist. This means the pedestrian/cyclist is looking into the lamps of the car. It is important in this situation that the pedestrian/cyclist is not blinded by the lights of the car and the driver of the car sees the pedestrian/cyclist clearly. This is because the pedestrian/cyclist and driver have to pass each other safely on the street. In the article ‘The effects of dimmable road lighting: A comparison of measured and perceived visibility’ is stated that the visibility is not much depended on the amount of light but mostly on the contrast. This means that if the light is coming towards you the brightness of the streetlight has to be higher, then when a car is heading in the same direction, to have a good visibility [9]. Therefore the streetlights should shine brighter in preference of the cyclist.
Then the last situation is that the pedestrian/cyclist wants to cross the street. This means that the pedestrian/cyclist has to see whether there is other traffic passing by. If the pedestrian/cyclist is looking in the direction where a car is coming from it gets blinded by the car lights, just like the second situation. However this time it is really important the pedestrian/cyclist can see if there is more traffic coming. To make sure the pedestrian/cyclist can see this, the streetlights have to shine brighter than in the second situation.
Drivers of cars
For the drivers, the most important thing is that they can see if there is other traffic coming so they can give priority from traffic that is coming from the right and they can just simply stop in time. As stated in the description of the street the cars are allowed to drive 30 [km/h]. This means that is has a stop distance of 5,3 meters including response time [10]. . So at the bare minimum, the driver has to see around 10 meters ahead. The average distance a light of a car can light up is 60 meter, in front of the car, with a low beam [11]. This means that the car lights are good enough to see the cyclist on time and the driver does not need the streetlights to be on. So the SMART streetlights should not respond one a car is driving over the street.
Example
To make everything more clear what is stated in the above chapters an example will be given. So when a car is driving on the street and a cyclist is bicycling the other way how bright should the streetlight light up? For the car, the streetlights should stay at the same percentage as normal.
Team Progress
Meeting
Meeting Sep 18 2017
References
- ↑ Haans, de Kort."Light distribution in dynamic street lighting"
- ↑ Chenani, Maksimainen. "The effects of dimmable road lighting: A comparison of measured and perceived visibility"
- ↑ Perkins, Steinbach. "What is the effect of reduced street lighting on crime and road traffic injuries at night? A mixed-methods study"
- ↑ Verhagen. "U wordt gefilmd (en uw emoties gemeten): wat doen die camera's in billboards op stations?"
- ↑ SilverSpring. "A brighter future"
- ↑ SilverSpring. "Whitepaper The business case for smart street lights"
- ↑ Irene M. "Eindhovens news"
- ↑ Haans, de Kort."Light distribution in dynamic street lighting"
- ↑ Chenani, Maksimainen. "The effects of dimmable road lighting: A comparison of measured and perceived visibility"
- ↑ C] S. Plainis, I.J. Murray and G. Pallikaris, April 12th 2006, ‘Road traffic casualties: understanding the night-time death toll’, Retrieved on the 20th of September 2017.[1]
- ↑ C] Wikipedia, last added on 16th of September 2017, ‘Headlamp’, Retrieved on the 20th of September 2017 [2]