Embedded Motion Control 2015 Group 7: Difference between revisions
Line 451: | Line 451: | ||
[[File:robot_p2p.png|right|350px|alt=Locations of points A,B.|Locations of points A,B]] | [[File:robot_p2p.png|right|350px|alt=Locations of points A,B.|Locations of points A,B]] | ||
<p>First, the point-to-point | <p>First, the point-to-point movement is discussed, where we discuss how the entity of the non-linear controller works. Note, that this movement type is not used, but only implemented in the code. Consider the following example: coordinate A is considered the position of PICO in x, y and theta. With use of the coordinates of edges received by "detection" point B can be placed, which decribes the position PICO should travel towards. This point B will then become the new initial coordinate, as the routine is reset. In case of a junction multiple points can be placed, allowing PICO to choose one of these points to travel to. </p> | ||
<p>The initial plan is to first allow PICO to rotate, followed by the translation to the desired coordinates. This idea was scrapped, because this sequence would be time consuming. Instead a non-linear controller was used, that asymptotically stabilizes the robot towards the desired coordinates.</p> | <p>The initial plan is to first allow PICO to rotate, followed by the translation to the desired coordinates. This idea was scrapped, because this sequence would be time consuming. Instead a non-linear controller was used, that asymptotically stabilizes the robot towards the desired coordinates.</p> |
Revision as of 12:44, 26 June 2015
About the group
Name | Student id | ||
---|---|---|---|
Student 1 | Camiel Beckers | 0766317 | c.j.j.beckers@student.tue.nl |
Student 2 | Brandon Caasenbrood | 0772479 | b.j.caasenbrood@student.tue.nl |
Student 3 | Chaoyu Chen | 0752396 | c.chen.1@student.tue.nl |
Student 4 | Falco Creemers | 0773413 | f.m.g.creemers@student.tue.nl |
Student 5 | Diem van Dongen | 0782044 | d.v.dongen@student.tue.nl |
Student 6 | Mathijs van Dongen | 0768644 | m.c.p.v.dongen@student.tue.nl |
Student 7 | Bram van de Schoot | 0739157 | b.a.c.v.d.schoot@student.tue.nl |
Student 8 | Rik van der Struijk | 0739222 | r.j.m.v.d.struijk@student.tue.nl |
Student 9 | Ward Wiechert | 0775592 | w.j.a.c.wiechert@student.tue.nl |
Introduction
For the course Embedded Motion Control the "A-MAZE-ING PICO" challenge is designed, providing the learning curve between hardware and software. The goal of the "A-MAZE-ING PICO" challenge is to design and implement a robotic software system, which should make Pico or Taco be capable of autonomously solving a maze in the robotics lab.
PICO will be provided with lowlevel software (ROS based), which provides stability and the primary
functions such as communication and movement. Proper software must be designed to complete the
said goal. Various models are used to design the behavior and structure of the software, see
Software Design. The final software design, including Git-links, is also dicussed in this section. The
details of the various software functions can be found in the Software Subsystems. At the end of
the page, the Maze challenge is discussed and an overall conclusion is presented.
Software Design
The software design is discussed in the following subsections. The requirements and functions of the software are listed and two different models are used to characterize the behavior and structure of the software. Note that the actual functionality of the software is not discussed in this section. More detailed information about the individual software functions can be found in Software subsystems.
Requirements and functions
The requirements specify what expectations the software should fulfill. In order for the robot to autonomously navigate trough a maze, and being able to solve this maze the following requirements are determined with respect to the software of the robot. It is desired that the software meets the following requirements:
- Move from one location to another
- No collisions
- Environment awareness: interpreting the surroundings
- Fully autonomous: not depending on human interaction
- Strategic approach
To satisfy the said requirements, one or multiple functions are designed and assigned to the requirements. The figure describes which functions are considered necessary to meet a specific requirement.
Behaviour model - The task-skill-motion pattern
In order to further specify the behavior of the software, a task-skill- motion pattern is constructed. This pattern describes the communication between the specified contexts and functions necessary to perform the task. The contexts and functions are represented by blocks in the interface and correspond with the requirements, functions, components and specifications previously discussed.
The robot context describes the lower level abilities and properties of the robot. In this case motors + wheels, the motor encoders and the laser range finder are mentioned. The EMC-framework controls this hardware and functions as an abstraction layer for the rest of the skills.
The environment context describes the ways the robot stores the information it knows about its surroundings. A geometric world model is used to store the location of corners, while a semantic world model is used to store the different junctions that are available and which of these the robot has already visited. Note that both these world models are implicit and temporary. There is no explicit world model in the software.
The task context describes the control necessary for the robot to deal with certain situations (such as a corner, intersection or a dead end). The skill context contains the functions which are considered necessary to realize the task. Note that the block `decision making` is considered as feedback control, it acts based on the situation recognized by the robot. However `Strategic Algorithm` corresponds with feed-forward control, based on the algorithm certain future decisions for instance can be ruled out or given a higher priority.
Furthermore, the skill context is divided into two subsections, which correspond to two of the subsections in the composition pattern, and contains all the skills the robot possesses.
Structure model - The composition pattern
The composition pattern, which functions as the structural model for the code, decouples the behavior model functionalities into the 5C’s. The code is divided into these five separate roles:
- Computational entities which deliver the functional, algorithmic part of the system.
- Coordinators which deal with event handling and decision making in the system.
- Monitors check if what a function is supposed to accomplish is also realized in real life.
- Configurators which configure parameters of the computational entities.
- Composers which determine the grouping and connecting of computation entities.
The complete system is split into three subsystems, consisting of the movement subsystem, the detection subsystem and the strategy subsystem. The operation of each of these subsystems is explained in the sections below. The way in which these three work together is determined by the monitor, coordinator and composer of the main system.
Main
The main task of the main file is to schedule the different subsystems correctly. Initially, only the detection subsystem and the movement subsystem are active. In this state, the robot moves forward by use of a potential field, while situations are searched. Once the detection subsystem recognizes a certain situation, the strategy subsystem is included in the main loop. This subsystem makes a decision regarding the direction of the robot, based on the information provided by the detection subsystem. New orders are then send to the movement subsystem, which determines and sets the robot velocity. In the case that the strategy thinks a door request should be called, this is also scheduled in the main file.
Detection
The detection subsystem is used to process the data of the laser sensors. Its main function is to observe the environment and send relevant information to the other subsystem and the main coordinator. The coordinator of the detection subsystem receives the unprocessed data from the EMC-framework and corrects the odometry data for a possible offset. As commissioned by the coordinator the composer then triggers all computational entities, which are then carried out consecutively. The computational entities are shortly explained, and further elaborated in the "Software Design".
- Measurement Processing: using Hough transform to convert LFR data to lines and markers.
- Situation Recognition: detecting corners, corridors and doors based on lines obtained by the Measurement Processing function.
- SLAM: creating global coordinate frame in order to localize PICO in the maze. (not used in final version of the code)
- Odometry correction: sending out the odometry data with respect to a certain origin. This origin can be replaced by use of the configurator.
Strategy
When the detection subsystem recognizes a situation (junction, T-junction or cross-junction) a discrete event is send to the coordinator of the strategy subsystem which then will make a decision regarding the direction the robot should move, based on the available options (as detected by the detection subsystem) and junction memory. The junction memory records which of the junctions of the situation have already been investigated. Based on this information one of the two movement types is chosen, see movement subsection, to guide to robot in the right direction. The movement type + direction is sent to the movement subsection. The strategy subsystem also has the possibility to request the opening of doors.
Movement
The movement subsystem controls the movement of the robot, based on the input it receives from the other subsystems. This subsystem has two different composers; point2point and homing. In theory, the strategy subsystem has the ability to switch between these two composers. However, in the final version of the code, only the homing composer is used, due to the fact that the point2point algorithm requires the absolute location of the robot (SLAM).
If used, point2point composer receives the current location of the robot, from detection, and a set-point location, from strategy, both in absolute coordinates. A non-linear controller is used to guide the robot from the current location to this set-point location. Due to the disability of this controller to move to a location directly behind the robot, a separate rotate functionality is included. The magnitude of the robot velocity is controlled separately according to a certain profile in order to limit the robot acceleration and reduce wheel slip. The maximum velocity of the profile can also be set by other subsystems. Lastly, a small potential field is used to avoid collisions. For more information about the individual computational entities, see Subsystems - Movement. Unfortunately, due to the fact that absolute localization (SLAM) appeared to difficult within the given time frame, this point2point composer is not used in the final version of the code and is therefore marked gray in the composition pattern.
The second composer, homing, uses a large potential field to move the robot through the maze, without knowing the absolute position of the robot. In the standard situation, the robot moves forward. However, a preferred direction, for instance 'left' or 'right' can be ordered by the strategy subsystem. Once again, a smaller, stronger potential field is used to avoid collisions. Also, a separate stop entity is implemented to let the robot wait before a door.
The movement subsection also contains a monitor. If the point2point composer is used, this monitor can check if the set-point location is reached. The monitor can also check if the robot is stuck, based on the current robot velocity. Unfortunately, the output of this monitor is not used (by strategy) in the final version of the code and is therefore marked gray in the composition pattern.
Code
In this section the 'best' pieces of code are presented and connected to the composition pattern. The software design of the composition pattern is based on the lessons learned from the lectures of Herman Bruyninckx. When using C++ classes 'the right way' it became evident that the composition pattern could almost directly be mapped to our software structure. In our opinion the best developed peice of software/composition pattern is the Movement subsystem together with the overal communication between all the subsystems and strategy's connection with the main coordinator. Therefore we would like to mainly show all the connections between the subsystems and the main, while omitting long peices of code necessary for the computational entities. When interessted in our full code we would like to refer you to our 'master4' branch which had the most success git:master4.
We would like to point out that all of our .h and .cpp files have the same structure, this made it very easy to keep our code well organized and readable for our colleagues. Private variables were used to share variables between functions. Public getters and setters were used to access and change these private variables from outside the subsystem. Getters proved very usefull in sending information to other subsystems and monitoring. Setters proved usefull for recieving information as well as configurators. Constructors were used to set all the private variables to their default value at creation in the main file.
Main
Since it all begins in the main loop lets start there. The main's function is already explained in the composition pattern, so for the actual implementation in the software take a look at main.cpp. We are proud of the connection with the strategy subsystem and how it helps schedule the main loop. The strategy subsystem is able to activate one of the three composers in the main via main's coordinator by sending its status via the strategy monitor.
Detection
The loop starts with the detection subsystem, it is necessary to first 'sense' your environment before taking any actions. The structure of the detection class/subsystem is set out in detection.h. With the actual implementation detection.cpp. To make it better readable the private variables of the slam subssytem were deleted in this snippet. We wish we had time to split the computational entities mprocessing into mprocessing and sitrec. We are proud on how this subsystem communicates with the other subsystems with our well designed configurators and monitors. The monitor allows for data flow control, it controls under what conditions a situation is send out. This is beneficial for the strategy subsystem since it will only be triggered when necessary and not for false or bad readings. The configurator allows for an odometry reset from anywhere in our software, now only used in the strategy subsystem when initiating an action.
Movement
When nothing 'special' has been sensed the movement subsystem is set to homing and will start driving. However it can recieve a movement 'type' from the strategy subsystem. The structure of the detection class/subsystem is set out in movement.h. With the actual implementation movement.cpp. We are proud on how well we were able to map our composition pattern this subsystem. A clear coordinator and composer is available which select the available computational entities based on a recieved movement type. A monitor is used to check the status of the most important variables within the subsytem and is able to send this to any subsystem or the main. Whereas the configurator can be used to change the behaviour of some of the computational entities. Such as the maximum velocity is used in the velocity profile or the preferred direction when using homing (the potential field) to navigate around.
Strategy
Strategy is the brains of the software, when the detection subsystem has found something strategy is activated in the main. The structure of the strategy class/subsystem is set out in strategy.h. With the actual implementation strategy.cpp. We are proud on the fact how well this function communicates with the main.cpp. It is able to keep itself turned on in the main loop when a situation has been detected for the first time and will turn itself off in the main loop when the situation has been handeled. This communication is handeled by the monitor of strategy. Moreover when a door has been detected the strategy subsystem will tell the main to execute an 'open door' request, wait for a few seconds and after that it will check wheter or not the door went open if not PICO will turn around. We would have liked to have enough time to split the computational entities in seperate functions as the composition pattern suggests.
Software subsystems
[new intro following on 27-05 wrt new structure and subsystems: movement, detection, strategy]
Detection
In order for Pico to be aware of its surroundings, the data collected by the laser is transformed into a useful format. Pico should be able to detect walls, different types of junctions and dead ends. These situations can all be expressed through certain couplings of lines and corner points. To achieve this, the laser data is first transformed into lines using the Hough transformation. Then corner points are detected using the intersection points of these lines. By coupling each corner point to one or two lines, certain situations can be recognized. It must be noted that unlike some other groups, the hough transformation is all written by ourself, OpenCV is only used to plot and verify the founded lines.
Hough transformation
The Hough transformationis used to detect lines from the laser data. The basic idea is to transform a single point (x,y) into the parameter space of the set of infinite lines running through it, called the Hough space. In the polar coordinate system of the laser scan, a line through a data point is given by ρ=d/cos(α-φ) where ρ is the length of the orthogonal from the origin to the line and φ is its inclination. By varying φ for each data point from 0 to 180 degrees, different (ρ,φ) pairs are obtained. Laser points which are aimed at the same wall will yield the same (ρ,φ) pair. To determine if a given (ρ,φ) pair is a wall, ρ is discretized, and a vote is cast at the corresponding element for that (ρ,φ) pair in an accumulator matrix. Elements with a high number of votes will correspond with the presence of a wall. As such, finding the local maxima in the accumulator matrix yields the locations of the walls seen by Pico.
Edge detection
The lines found using the Hough transformation are infinite, without any end points. These end points are detected by coupling each increment of the laser data with one of the found lines. This is done by comparing the measured distance of that increment with the projected distance of that increment on the line, given by rprojected=ρ/cos(α-φ). After having coupled each increment with a line, the increment at which this coupling switches from one line to another gives the location of an end point. However, some of the detected end points will be located at the edge of Pico’s vision, for example when Pico is in front of a turn and cannot see the wall completely. Therefore only end points which lie close to each other, i.e. the corner of a turn where two detected line intersect, are taken into account while the rest are discarded. Because the end points which are not located at the intersection of two lines are discarded, an extra method is needed to find end points which lie on only one line, such as in the case of a T-junction. These end points are detected by searching for a large difference in the measured distance between two laser increments. In order to improve the robustness of this method, the average of multiple neighbouring elements is checked. This idea is shown in the figure edge detection. Together with Hough transformation, these 2 subsystems build up the mprocessing entity.
Situation recognition
Situations are recognized using the coupling of each detected corner with one or two detected lines. By comparing two corners which lie within a certain distance of each other, three main types of situations are discerned. These are: a T-junction where the left and right directions are open, a T-junction where the forward and left/right directions are open, and dead ends. These three situations are depicted in Figure situation recognition, where the corners are shown in green, solid black lines show lines which are coupled with one or no corners, and solid blue lines show lines which are shared by two corners. The dashed green lines show the range of laser increments used to confirm the situation.
In the case of a T-junction where the left and right directions are open, both corners will be coupled with only one line. The distance to the opposite wall is measured and must not be too far from the two corners for this situation to be present. In a dead end, the two detected corners will both be coupled to two lines, one of which is shared. To confirm a dead end, the laser data between the two corners must lie on the shared line, and the other two lines must be on opposite sides of the robot.
Finally, in the case of a T-junction where the forward and left or right directions are open, the corners share one line, and only one corner is coupled with a second line. If the laser data between the corners lies on this second line, such a T-junction is present. Whether there is an opening in the left or right direction is determined by looking at the angle of the corner coupled with two lines compared to the angle of the other corner. If two such T-junctions are found in close proximity to each other, they will be combined into a crossroads.
The gif here below shows pico’s performance on the simulation. The maze used in this gif consists multiple dead ends and a door. The left screen shows how pico drives there this maze in the simulation. The right screen shows what pico ’’sees’ ’ based on the implementation from detection. Herein are the blue lines the wall, white dots the corner points and blue lines opening or dead end. The red dots on blue lines are used as extra safety to check if the found dead ends are really closed. It can be seen that the corners, openings and dead ends are detected robustly.
SLAM
For localisation and mapping, the extended Kalman filter is used for the slam algorithm. Our own made algorithm can be divided into two parts. In the first part the founded markers, in our case corners, are used to make a prediction of the position of the robot ([math]\displaystyle{ \bar{\mu}_x }[/math], [math]\displaystyle{ \bar{\mu}_y }[/math], [math]\displaystyle{ \bar{\mu}_{\theta} }[/math]) and the markers ([math]\displaystyle{ \bar{\mu}_{x,i} }[/math], [math]\displaystyle{ \bar{\mu}_{y,i} }[/math]). In the second part, the robot is driving through the environment and gets information about corners from other classes. The found markers must be associated with already found markers our must be saved as new markers. With the extended Kalman filter, the positions of the robot and found markers are updated.
Prediction problem
The prediction is made with use of the already found corners. These are translated to the global coordinates and the positions are stored in a vector. As initial guess, the odometry data is used to predict how far the robot has moved compared with the last time.
[math]\displaystyle{ \begin{bmatrix} \bar{\mu}_x \\ \bar{\mu}_y \\ \bar{\mu}_{\theta} \end{bmatrix} = \begin{bmatrix} \mu_x + \Delta x \cdot \cos(\Delta \theta) - \Delta y \cdot \sin(\Delta \theta)\\ \mu_y + \Delta x \cdot \sin(\Delta \theta) + \Delta y \cdot \cos(\Delta \theta)\\ \mu_{\theta} + \Delta \theta \end{bmatrix} }[/math]
Here [math]\displaystyle{ \Delta \theta }[/math] is the angle the robot is moved between the current en previous angle, [math]\displaystyle{ \Delta x }[/math] the difference in x-direction, and [math]\displaystyle{ \Delta y }[/math] the difference in y-direction. Also the covariance matrix is determined to predict the accuracy of the measurements. The values for the amount of noise of the measurements, must be tuned during experiments.
Association problem
When the robot is driving through the maze, every loop there is a possibility that there are corners detected. For each of these corner, there must be found out if these corners are already detected, or are not saved yet. For now, there is chosen to make a finding area of 20cm by 20cm where is search, based on the prediction. So there is made an estimation where the markers should be and these are compared with the found markers. When the difference is lower than the chosen tolerance, the marker is found again. When the marker is found again, the position of the marker is updated with use of the Kalman filter and the same is done for the position of the robot. If the marker is not found before, the marker is saved in the vector [math]\displaystyle{ \mu }[/math].
The vector with the position of the robot and markers [math]\displaystyle{ \mu }[/math] can be used to make a world map. The robot can be positioned in this map.
In the video below, the working slam algorithm together with the hough lines are shown. For the all movements except rotations, the algorithm is placing the markers at the right places, and when moving the robot is positioned correctly with respect to all markers.
Strategy
The Strategy consists of two plant, the initial plan and the final plan as used during the Maze challenge.
Initial Plan
The initial strategy plan is dependant of the SLAM and Detection part of the code. It consists of a Tremaux algorithm which is provided with a highest succes rate decision maker, a pathplanner and a Dijkstra algorithm to determine the shortest path.
Tremaux describes the placing of landmarks and the (random) order selection of certain choices which can be made by PICO, in this case which path to continue at i.e. an intersection. The highest succes rate decision maker is applied to remove the randomness in the Tremaux algorithm, the direction of the intersection with the least side branches is most preferred (it has the most chance of being successful).
The pathplanner is used to process all the landmarks placed by the Tremaux algorithm into a matrix, describing all possible connections and costs (in this case distance) between nodes. The Dijkstra algorithm will determine the lowest distance of unvisited node, connected to a certain starting node. All possibilities will be stepwise determined, updating the most proferred path from start to end. At the end of the strategy process an array will result, describing all necessary landmarks PICO should move to in order to reach the end.
Change of Plans
As earlier discussed, SLAM is not working robustly as desired, rotation of PICO leads to insufficient results. Since the original plan of Strategy was highly dependant on both the overall Detection as SLAM, a change of tactics is necessary. The alternative plan will not make use of SLAM, and therefore the strategy lacks the presence of certain map. As a result , some issues will occur in specific occasions. These issues will be tackled individually, the main goal in this stage of the project is a PICO actually capable of finishing the Maze challenge.
Due to the absence of SLAM and the map, the Tremaux and Dijkstra algorithms can not be used as initially planned. The strategy will now consist of a " switch", capable of switching between the Homing and the action as decided by the decision maker. Detection will detect a i.e. a deadend or junction, raising their corresponding integer. This integer will trigger a specific decision maker in Strategy based on the situation PICO has recognized. Detection will also determine the open side branches, usefull for the orientation of the T-junction.
If PICO would recognize a junction, a position in which in certain choice has to be made, the decision maker is triggered. The decision is predescribed and depends on the value of the previous " action" of PICO. If PICO would have made a certain decision at a junction, and this choice was unsuccesfull, it will return to the same junction and the " action" is updated. In this way, PICO will analyse every choice in a structured manner. If during a certain choice PICO would again recognize a junction this means that this choice is in some way succesfull, therefore the " action" is resetted. For the T-junction and cross junction to following actions are predescribed:
- Cross junction: 1: "go right", 2: "go straight", 3: "go left" and 4: "go straight"
- T-junction: 1: "go right" and 2: "go straight"
For the T-junction this will mean that the action is automatically updated if the desired direction as predescribed by the action schedule set is not possible (hence not open). This method us somewhat cumbersome and time demanding, but should make PICO capable of finishing the maze.
Movement
The "movement" part of the software uses data gathered by "detection" to send travel commands to PICO. As already discussed, the part of "strategy" is basically the "decision maker" which commands the "movement" of PICO. An odometry reset has been implemented to make sure that the code functions properly every time PICO starts in real life.
Initially, the idea was to implemented a non-linear controller for point-to-point based movement, however, SLAM wasn't successfully operational and a second approach was implemented. Namely the homing entity. Although the non-linear controller wasn't used, it is still implemented in the original code.
Homing and point-to-point were both different tactics for movement, where point-to-point worked on global coordinates, and homing could solve the maze locally. Futhermore, homing was based on a potential field, whereas point-to-point was based on dynamic system.
Point-to-point (non-linear controller)
First, the point-to-point movement is discussed, where we discuss how the entity of the non-linear controller works. Note, that this movement type is not used, but only implemented in the code. Consider the following example: coordinate A is considered the position of PICO in x, y and theta. With use of the coordinates of edges received by "detection" point B can be placed, which decribes the position PICO should travel towards. This point B will then become the new initial coordinate, as the routine is reset. In case of a junction multiple points can be placed, allowing PICO to choose one of these points to travel to.
The initial plan is to first allow PICO to rotate, followed by the translation to the desired coordinates. This idea was scrapped, because this sequence would be time consuming. Instead a non-linear controller was used, that asymptotically stabilizes the robot towards the desired coordinates.
Although the PICO has an omni-wheel drive platform, it is considered that the robot has an uni-cylce like platform whose control signals are the linear and angular velocity ([math]\displaystyle{ u }[/math] and [math]\displaystyle{ \omega }[/math]). The mathematical model in polar coordinates describing the navigation of PICO in free space is as follow:
- [math]\displaystyle{ \dot{r}=-u \, \text{cos}(\theta)\! }[/math]
- [math]\displaystyle{ \dot{\theta}=-\omega + u\, \frac{\text{sin}(\theta)}{r},\! }[/math]
where are [math]\displaystyle{ r }[/math] is the distance between the robot and the goal, and [math]\displaystyle{ \theta }[/math] is the orientation error. Thus, the objective of the control is to make the variables [math]\displaystyle{ r }[/math] and [math]\displaystyle{ \theta }[/math] to asymptotically go to zeros. For checking such condition, one can consider the following Lyapunov function candidate: [math]\displaystyle{ V(r,\theta) = 0.5 \, r^2 + 0.5 \, \theta^2 }[/math]. The time derivative of [math]\displaystyle{ V(r,\theta) }[/math] should be negative definite to guarantee asymptotic stability; therefore the state feedback for the variables [math]\displaystyle{ u }[/math] and [math]\displaystyle{ \omega }[/math] are defined as,
- [math]\displaystyle{ u = u_{max}\, \text{tanh}(r)\, \text{cos}(\theta) \! }[/math]
- [math]\displaystyle{ \omega = k_{\omega} \, \theta + u_{max} \frac{\text{tanh}(r)}{r} \, \text{sin}( \theta) \, \text{cos}( \theta),\! }[/math]
where [math]\displaystyle{ u_{max} }[/math] and [math]\displaystyle{ k_{\omega} }[/math] both are postive constants.
Homing (potential field)
If PICO would be located at position A and would directly travel towards point C, this will result in a collision with the walls. To avoid collision with the walls and other objects, a potential field around the robot will be created using the laser. This can be interpreted as a repulsive force [math]\displaystyle{ \vec{U} }[/math] given by:
- [math]\displaystyle{ \vec{U}(d_l) = \begin{cases} K_0 \left(\frac{1}{d_{pt}}- \frac{1}{d_l} \right) \frac{1}{{d_l}^2} & \text{if } d_l \lt d_{pt}, \\ ~~\, 0 & \text{otherwise}, \end{cases} }[/math]
where [math]\displaystyle{ K_0 }[/math] is the virtual stiffness for repulsion, [math]\displaystyle{ d_{pt} }[/math] the range of the potential field, and [math]\displaystyle{ d_l }[/math] the distance picked up from the laser. Moreover, the same trick can be applied in order for an attractive force
- [math]\displaystyle{ \vec{V}(d_l) = \begin{cases} 0 & \text{if } d_l \lt d_{pt}, \\ ~~\,K_1 d_{l}^2 & \text{otherwise}, \end{cases} }[/math]
where [math]\displaystyle{ K_1 }[/math] is virtual spring for attraction. Summing these repulsive force [math]\displaystyle{ \vec{U} }[/math] results into a netto force,
- [math]\displaystyle{ \vec{F}_n = \sum_{i=1}^N \vec{U}(d_{l,i}) + w_i\vec{V}(d_{l,i}), }[/math]
where [math]\displaystyle{ N }[/math] is the number of laser data, and [math]\displaystyle{ w }[/math] a weight filter used to make turns. Assume that the PICO has an initial velocity [math]\displaystyle{ \vec{v_0} }[/math]. Once a force is introduced, this velocity vector is influenced. This influence is modeled as an impulse reaction; therefore the new velocity vector [math]\displaystyle{ \vec{v}_r }[/math] becomes,
- [math]\displaystyle{ \vec{v}_r = \vec{v_0} + \frac{\vec{F}_n \,}{m_0} \, \Delta t, }[/math]
where [math]\displaystyle{ m_0 }[/math] is a virtual mass of PICO, and [math]\displaystyle{ \Delta t }[/math] the specific time frame. The closer PICO moves to an object, the greater the repulsive force becomes. Some examples of the earlier implementation are included:
Maze challenge
During the maze challenge, the performance of PICO was not satisfactory as it wasn't able to reach the door or solve the maze. During the final test, the day before the challenge, it was already clear that the detection part of the code did not give the desired results in real life, which is in contrary to the simulation where it worked fine. This is caused by the fact that in real life, the incoming laserdata is not so nicely received by PICO due to diffuse reflectance of the walls, opposed to in the simulation where the walls are 'smooth', and due to noise present in the data. Although prior testdata was saved to optimize the detection afterwards with the simulation, it did not give the same results as in real life. Apparently these tests were not representative for the actual maze. The robot did not recognize situations properly because the detection part, which should have distinguished the situations that could appear in a maze, was not robust enough. To try to make it work, some tolerances were changed. However, during the first try of the maze challenge, PICO started rotating too early or kept rotating because the detection was still not good enough. This made PICO think it was at a junction all the time and that it had to take action, i.e. make a turn.
For the second try, a different code was used with other detection parameters. This time, PICO did a better job at recognizing the situations, but still not satisfactory. It failed to recognize the T-junction of the door, after which it came to a halt at a corner. Stuck in its place, it did not move anymore and that concluded the second try. The fact that it did not move anymore might be because of the used potential field which was used to drive. The input command for driving was very low when it got stuck. The potential field did not have an integrator action to give it a high value when standing still. With the low drive input, the motors did not get enough power to overcome the static friction, resulting in PICO being stuck in one place.
An improvement therefore would be to add an extra check to verify if the drive input is high enough and, if necessary, increase this input. The detection part of the code should be made more robust as well to make sure the situations that are present in a maze will be detected properly. This could be done by for instance adding filters to the incoming laserdata or by changing the detection tolerances which are used to determine whether something is a cross- or T-junction.
Overall conclusion
We learned a lot during the course of this project, i.e. programming in C++ in a clear and structured way by making use of a composition pattern. How to set requirements, functions, components, specifications, and interfaces while designing software to reach a certain goal and the big advantages of designing in this way have become clear. Working with Git and Ubuntu, of which no member had experience with, is something that has improved our overall programming efficiency and will be useful in the future. Furthermore, the communication of the hardware and software of a robot has become clear thanks to the hands on tests with PICO and the lectures of Herman Bruyninckx.
It is unfortunate that PICO did not solve the maze in the end. Up to the final test, the day before the maze challenge, it could detect situations in the maze and move nicely through our small test-mazes. However, when we put everything together it did not do what we intended it to do. In the end, we think we bit off more than we could chew. At the start of the project we decided to use SLAM to create a world model and based on that we would use Tremaux's alghorithm to solve the maze. We wanted to make everything ourselves and not just simply implement already existing methods from OpenCV or ROS, so we would understand what is happening. However, it proved that SLAM was hard to realize and that creating our own Hough-lines algorithm was no easy task either. Furthermore, the overall code structure kept changing during the project to match the composition pattern, which step after step kept improving. These improvements were a combination of new code/tactics and the lack of experience at the beginning of the project. After it had been decided that it would be too risky to rely on SLAM, as it might or might not work, a simpler strategy was used and there would be no mapping of where the robot has been. The main focus was shifted to creating a clear code structure, in which we succeeded if we do say so ourselves.
Regarding SLAM, we were very close to successfully creating it on our own as can be seen in SLAM. With more time, this would be a success as well. A thing which was a success, was the way PICO moved using Point2Point and Collision Avoidance. It moved nicely towards a set point in space while it avoided obstacles in its way. Due to the change of strategy without SLAM, we did not implement it as it would rely on SLAM. In the end, with the changed strategy PICO was able to move nicely through the maze in the simulator, but unfortunately not in real life.
A challenge during the entire project was our group size. We noticed it was important to maintain good communication with everyone, something which was difficult and not always achieved. We experienced that the reality is different from the simulation and if we had more testing time, we might have altered the code such that the results were satisfactory. We also learned that first determining a good overall code structure and sticking to it is key. We did change the structure a lot, but we are proud of it now. Another thing we are proud of, is the fact that we wrote everything ourselves, even if it was not used eventually, like SLAM.