Mobile Robot Control 2023 Group 8: Difference between revisions
m (→Navigation Assignment 1: small explanation added) |
|||
Line 19: | Line 19: | ||
===Navigation Assignment 1=== | ===Navigation Assignment 1=== | ||
It is more efficient to only place nodes at turning points of the robot (so it can drive straight from node to node), or at a decision point (where the robot can take either of two routes). In between the nodes, the robot will have to drive straight anyway, so it is not necessary to use extra nodes in between. This way the number of nodes is decreased from 41 to 20. Hence, the algorithm will have to explore fewer nodes on the way. This will save unnecessary computations, making the algorithm more efficient. | |||
===Navigation Assignment 2=== | ===Navigation Assignment 2=== | ||
TBD | TBD |
Revision as of 15:12, 10 May 2023
Welcome to our group page.
Group members
Name | student ID |
---|---|
Eline Wisse | 1335162 |
Lotte Rassaerts | 1330004 |
Marijn Minkenberg | 1357751 |
Exercise 1 : The art of not crashing
Instead of just stopping, we made the robot turn around whenever it came close to a wall in front of it. The video of the bobo robot running our dont_crash script can be found here: https://drive.google.com/file/d/109fDDzf6ou2HHuSZgOicY27pRdOpJs0s/view?usp=sharing.
It is more efficient to only place nodes at turning points of the robot (so it can drive straight from node to node), or at a decision point (where the robot can take either of two routes). In between the nodes, the robot will have to drive straight anyway, so it is not necessary to use extra nodes in between. This way the number of nodes is decreased from 41 to 20. Hence, the algorithm will have to explore fewer nodes on the way. This will save unnecessary computations, making the algorithm more efficient.
TBD