PRE2020 4 Group6: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 508: Line 508:


=Questionaire answers from a caretaker=
=Questionaire answers from a caretaker=
In order to get a deeper understanding how people with Down's syndrome would or could react to our project contact was sought with a caretaker. This caretaker has around 10 years of experience with these particular patients, this means that the answers to the questions are usefull to the project at hand. In the following text first the questions will be posed after which the answers are written. Lastly some extra pointers given by the caretaker will be mentioned.
Q) What would people with Down's syndrome need in daily life that this plant can help with?(To combat boredom for example)
A) Becoming more independant, that is a hot item at the moment. Caretakers want theur patients to be able to live as long as possible on their own.
Q) Do you think that our project can improve their daily life?
A) Not only do plants make sure that there is cleaner/better quality of air in the patients room, but they also get thought to take care of the plant in a creative and playfull manner.
Q) Do you think that our project would need to het more funtions?
A) Only sound might not be enough, it can become quite noise in care homes. But these patients also react very well to a combination of visual and auditive stimulation. The visual stimulation does not need to be complicated, colors would suffice, so for example a yellow light means more sunlight or a blue light means more water. This way they also get a more satisfactory feeling in the long run.
These patients also forget general tasks quite a bit, this would be giving water in regular intervals for example, a solution would be the use of so called 'pictokaarten' and a weekly schedule. These pictokaarten are designed to not give any confusion on the action that has to be taken and the weekly schedule gives them a place where they can easily find the tasks that have to be done on a certain day. Direct tasks, for example more sunlight, would be perfect in an visual/auditive stimulation.
Q) What would be the best way for our project to approach people with Down's syndrome?
A) The best way to approach them is in a positive and cheerfull way yet the message has to be simple and clear, and thank/compliment them if they performed the task well.
  For our project the following 3 suggestions were given:
  1. 'I am thirsty, could you give me some water?', 'Thank you, now I am not thirsty anymore.'
  2. 'I am quite hot, would you mind placing me in the shade?', 'Now I am nice and cool, thank you.'
  3. 'I am quite cold, would you mind placing me in the sun?', 'Thank you, now I am not cold anymore.'
  What might help the patients in the long run is some sort of checklist, these already get used now to see if they keep getting a better understanding of the tasks they are performing. This checklist could ask what color lamp has
  what meaning for example, this can then be excecuted with their caretaker.
Some general remarks.

Revision as of 10:59, 2 May 2021

Members Student ID Faculty E-mail
Marijn Borghouts 1449532 BMT m.m.borghouts@student.tue.nl
Bert de Groot 1459597 ME g.d.groot@student.tue.nl
Nando di Antonio 1465325 ME n.z.d.antonio@student.tue.nl
Dorien Duyndam 1305107 EE d.a.duyndam@student.tue.nl

Subject

Idea

The idea is to create a smart plant system that would notify the user if it needs either water or more or less sunlight. The target group is a social work space (zorgboerderij) for mentally disabled people. They can see or hear which plant needs attention and get that plant what it needs. The social workers will therefore do something useful which is very great for such people. The people monitoring this social work space will also get a great work relief because of this system because they don’t have to tell these people what to do with the plants anymore. The plant pot will probably get a nice face so that it looks like a friendly robot and it will get water sensors implemented in the soil and light sensors around the plant to monitor the amount of light the plant gets. The pot will also be able to notify when it is being moved or given water and will start saying nice things to the person moving it or giving it water.

USErs

User

The main target group for this product is people with a mental disability. The product is designed to help the users overcome some of the challenges that they face due to their disability. "Mental disability" is a very broad term and can out itself on a whole spectrum of problems, ranging from difficulty with speaking to recognising emotions. For the sake of making a more tailored product, we have decided to focus on people with Down syndrome. This decision allows us to gather more specific needs and requirements from the users (which can be found in its own section).

Our robot will notify the user by speech when a plant needs more or less water, or more or less sunlight. This way the product helps the user take care of a plant without having to do complex tasks like remembering when and how often a plant needs water or sunlight. Our robot gives simple, chopped up clear instructions so that the user knows what is being expected from him/her. After a task is completed, the robots will give confirmation in the form of positive feedback to the user. This helps assure the user that a task has been successfully completed. This way our product makes caring for plants more accessible for people with Down syndrome. which has all types of benefits (see Sources XXXX)

The secondary users are the caretakers. The product is meant to be used by people with Down syndrome but is meant to be bought and installed by the caretakers. This device helps relieve workload from the caretakers by automating a part of the managing and task distribution process in a social work environment. Therefore it is important to always be mindful of who the users of specific functions is and what their needs and capabilities are.

Society

Some say that a society is measured by how it treats its weakest members (famous misquote NOT by Ghandi {Does this need an extra source?}). We realise that our product will not solve any world crisis or drastically improve the farming capacity of social workspaces, but it helps people who need a little bit more care. Our robot allows people with Down syndrome to more easily perform work, giving them a way to spend their day and make themselves (somewhat) useful. This benefits society by allowing better participation across all layers of society and show empathy and care toward those who need it the most.

Secondly, this helps relieve some of the workload of social caregivers who are often overworked. Financing for this sector generally low {does this need a source?} and our product might save some valuable time by automating some simple repetitive tasks.

Enterprise

This product of course has to be developed and manufactured. This creates jobs and potential revenue which is all good for the economy. Products of these types do already exist (see sources XXXX) but there are mainly focused on increasing greenhouse yield. This product has a different goal and is therefore unique enough to not have to deal with fierce competition in the market, giving it a fair shot at succeeding in our opinion.

Plan

Week 1

  • Come up with an idea (all)
  • Make the planning (Bert, Nando)
  • Find relative papers (all)
  • Decide who the USErs will be (all)
  • Research about why it is good for the users (all)
Name Total hours Tasks
Marijn 10 Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2)
Bert 10 Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2)
Nando 10 Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2)
Dorien 10 Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2)

Week 2

  • List the needs this user requires (Marijn, Dorien)
  • Research about possible components (Nando, Bert)
  • RPC list (Dorien, Marijn)
Name Total hours Tasks
Marijn 10 Group meeting (2x2u), Improving the users/society/enterprise section (1u), Literature study into the needs of people with DS (2u), improving our schedule and gathering action points for this week(1u), redefining our goals and thinking about a way to test those (2u)
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 3

  • Design an electrical circuit (Bert)
  • Make a start on the design of the pot (Dorien, Nando)
  • Start working on the code (Marijn, Nando)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 4

  • Start with the CAD design of the pot (Nando)
  • Continue working on the code (Marijn, Bert, Dorien)
  • Start testing the electrical components (Dorien, Bert)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 5

  • Adjust the code according to the test results (Bert, Nando)
  • Test again (Marijn, Dorien)
  • Build a prototype (all)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 6

  • Upgrade the code again (Marijn, Bert)
  • Adjust things to the prototype according to the test results (Nando, Dorien)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 7

  • Work on the cstwiki (all)
  • Work on the design and start on the product (all)
  • Start working on the final presentation (all)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 8

  • Work on the cstwiki (all)
  • Work on the design and start on the product (all)
  • Start working on the final presentation (all)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks

Week 9

  • Work on the cstwiki (all)
  • Work on the design and start on the product (all)
  • Start working on the final presentation (all)
Name Total hours Tasks
Marijn hours tasks
Bert hours tasks
Nando hours tasks
Dorien Hours tasks


Approach

The approach will be as follows. Firstly, a literature study will be held in order to increase the knowledge about the subject and to find arguments in support of or against the project. Then contact will be sought with caretakers, since they have direct experuebce in working with people with mental disabilities. these caretakers will be asked several questions, some questions are inline with our vieuws so we can get their feedback and other questions allow them to freely give their own views and opinions. Secondly, many solutions will be thought of and the best solutions will be used to further develop a prototype, this should resemble the final product quite closely. The prototype will consist of mechanical parts with the implementation of software. This in turn will give the possibility to test the prototype and use it in its predefined enviroment. Lastly, the prototype will be adjusted to better resemble a final product in looks and performance.

Deliverables

  • The first deliverable will be this wiki page. It logs our progression and helps the tutors and other people with an interest in our project to follow the progression of the project.
  • The second deliverable will be our physical prototype of the greenhouse climate management system.
  • The third deliverable is the final presentation, in which we present our project for our teachers and peers.

Milestones

  • 1: Literature study
  • 2: Make an RPC list
  • 3: Make a BOM list
  • 4: Ordering of the parts
  • 5: Software development
  • 6: Making the prototype
  • 7: Make the final design
  • 8: Finalise the wiki page

Objectives

Cost efficient/Affordable

The prototype should make optimal use of the available resources. Furthermore the components and assembly process should be as cheap as possible to reduce the total production cost, making the design cheaper for users (or obtaining a bigger profit margin for the vendor)

Easy to use

The prototype should be easy to install and operate. This is especially important considering the target audience of mentally handicap people. This product is designed to help these people with doing more complex tasks. If the operation of the product is not extreme straight forward it will only work counter effectively.

Friendly/Positive reinforcement

We want the product to interact nicely with the user. The product should communicate with the user in a friendly manner and compliment the users when they perform an action. This makes the product more pleasant to use and the explicit positive reinforcement confirm to the mentally disabled people that they are in fact doing a good job.

State of the art

Section one: sources on existing smart greenhouse control systems

[1] Abbassy, M. M., & Ead, W. M. (2020). Intelligent Greenhouse Management System. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020. https://doi.org/10.1109/ICACCS48705.2020.9074345

This paper mentions an robotic intelligent greenhouse management system. Which reads out the water level, humidity, and measures the moisture content of the soil based on real-time area data. With arduino components.


[2]Kaneda, Y., Ibayashi, H., Oishi, N., & Mineno, H. (2015). Greenhouse environmental control system based on SW-SVR. Procedia Computer Science, 60(1). https://doi.org/10.1016/j.procs.2015.08.249

This paper includes information about the general design of a greenhouse automatic environment control system.


[3]Kokieva, G. E., Trofimova, V. S., & Fedorov, I. R. (2020). Greenhouse microclimate control. IOP Conference Series: Materials Science and Engineering, 1001(1). https://doi.org/10.1088/1757-899X/1001/1/012136

This paper discusses (the lack of) a mathematical model to control greenhouse temperature and heat transfer.


[4]Kumar, A., Singh, V., Kumar, S., Jaiswal, S. P., & Bhadoria, V. S. (2020). IoT enabled system to monitor and control greenhouse. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.040

This paper includes diagrams of arduino (components) and wiring to assemble a greenhouse management system.


[5]Sri Jahnavi, V., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2). https://doi.org/10.1080/03772063.2014.999834

This source includes information on all types of smart sensors aimed at a smart greenhouse.


[6]Von Borstel, F. D., Suárez, J., De La Rosa, E., & Gutiérrez, J. (2013). Feeding and water monitoring robot in aquaculture greenhouse. Industrial Robot, 40(1). https://doi.org/10.1108/01439911311294219

This paper contains the design of a robotic system to feed aquatic organisms and measure water physicochemical parameters in experimental aquaculture ponds. Our own system is focused on plants but the robotic monitoring of environmental parameters is of interest here.


[7]Zhang, C. (2018). Greenhouse intelligent control system based on microcontroller. AIP Conference Proceedings, 1955. https://doi.org/10.1063/1.5033697

This paper contains a chart with components of a greenhouse control system, including information on the circuitry per module, and a flow chart of how the software should work.


[8]Zhao, R., & Lu, L. (2020). Automatic Temperature and Humidity Detection and Alarm System for Greenhouse. IOP Conference Series: Earth and Environmental Science, 512(1). https://doi.org/10.1088/1755-1315/512/1/012099

This paper designs and implements the monitoring and alarm system of temperature and humidity of a greenhouse.


[9]Loram, A., Warren, P., Thompson, K., & Gaston, K. (2011). Urban Domestic Gardens: The Effects of Human Interventions on Garden Composition. Environmental Management, 48(4), 808–824. https://doi.org/10.1007/s00267-011-9723-3

This paper talks about how taking care of plants works stress-relieving.


[10]Pedrinolla, A., Tamburin, S., Brasioli, A., Sollima, A., Fonte, C., Muti, E., Smania, N., Schena, F., & Venturelli, M. (2019). An Indoor Therapeutic Garden for Behavioral Symptoms in Alzheimer’s Disease: A Randomized Controlled Trial. Journal of Alzheimer’s Disease, 71(3), 813–823. https://doi.org/10.3233/jad-190394

This paper is about fardening as a therapy for people with Alheimers disease.


[11]George, D. R. (2013). Harvesting the Biopsychosocial Benefits of Community Gardens. American Journal of Public Health, 103(8), e6. https://doi.org/10.2105/ajph.2013.301435

This paper is about how community gardens work for people with other mental illnesses, so it could also work on people with down syndrome.


[12]George, D. R., Kraschnewski, J. L., & Rovniak, L. S. (2011). Public Health Potential of Farmers’ Markets on Medical Center Campuses: A Case Study From Penn State Milton S. Hershey Medical Center. American Journal of Public Health, 101(12), 2226–2232. https://doi.org/10.2105/ajph.2011.300197

This paper is about how farmer-markets work positively on the health of people.


[13]Wieseler, N. A., Hanson, R. H., Chamberlain, T. P., & Thompson, T. (1988). Stereotypic behavior of mentally retarded adults adjunctive to a positive reinforcement schedule. Research in Developmental Disabilities, 9(4), 393–403. https://doi.org/10.1016/0891-4222(88)90033-9

A paper about a study which evaluated the indirect effects on stereotypic frequency when the value of a concurrent fixed-interval reinforcement schedule for adaptive behaviour was varied.


[14]Weatherley, P. E. (1976). Introduction: water movement through plants. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 273(927), 435–444. https://doi.org/10.1098/rstb.1976.0023

This paper explains how water movement in plants work.


[15]Carder, C. (2004). Irrigation systems. Rocky Mountain Construction, 85(20), 5. Retrieved from https://search-proquest-com.dianus.libr.tue.nl/trade-journals/irrigation-systems/docview/196317404/se-2?accountid=27128

A paper about the irrigation technology being used currently


[16]Vijendra Babu, D. (2020). Automatic Irrigation Systems for Efficient usage of Water using Embedded Control Systems. 993 012077

A paper about a similar project being done


[17]Mudiyanti, R. (2019). Design watering system on greenhouse using microcontroller with matrix based. iopscience.iop.org. 1280 022067

This paper is about desiging a watering system on a greenhouse using microcontroller with matrix based


[18]Gafni, V. (1999). Robots: A Real-Time Systems Architectural Style. ACM SIGSOFT Software Engineering Notes, 24(6), 1–18. https://doi.org/10.1145/318774.318786 This paper gives a broad description of what robots are


[19]Angela P. Presson, Ginger Partyka, … Edward R.B. McCabe, Current Estimate of Down Syndrome Population Prevalence in the United States, The Journal of Pediatrics, Volume 163, Issue 4, 2013, Pages 1163-1168, ISSN 0022-3476, https://doi.org/10.1016/j.jpeds.2013.06.013.

A paper about how often the syndrome of down occurs


[20]Robert A. Catalano, Down syndrome, Survey of Ophthalmology, Volume 34, Issue 5, 1990, Pages 385-398, ISSN 0039-6257, https://doi.org/10.1016/0039-6257(90)90116-D.

This paper goes really deep into what the syndrome of down actually is


[21]Mark Selikowitz. Down Syndrome. Vol 3rd ed. OUP Oxford; 2008. Accessed April 22, 2021. http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=467605&site=ehost-live

This paper is about raising children with down syndrome


[22]Chao, D., & Lin, H. (2010). The tricks plants use to reach appropriate light. Science China Life Sciences, 53(8), 916–926. https://doi.org/10.1007/s11427-010-4047-8

This paper explains how plants make sure they get the right amount of light, so not too much and not too little.


[23]Vanderbilt, V., & Grant, L. (1985). Plant Canopy Specular Reflectance Model. IEEE Transactions on Geoscience and Remote Sensing, GE-23(5), 722–730. https://doi.org/10.1109/tgrs.1985.289390

A model for the amount of light specularly reflected and polarised by a plant.


[24]Roberts, E., & Burleigh, M. (2010). Watering Systems for Success in Growing Plants, Using Low pH and Ammonium Nitrogen. Cactus and Succulent Journal, 82(6), 266–275. https://doi.org/10.2985/0007-9367-82.6.266

The paper describes what changes should be made to the water that is used in the system in order to get the best results.


[25]Drury, & Sally. (2011). Watering, bedding plants and tubs. Horticulture week, 34. https://search-proquest-com.dianus.libr.tue.nl/trade-journals/watering-bedding-plants-tubs/docview/872335545/se-2?accountid=27128

This paper explains when it is the best time of day to water certain plants.


[26]Rogers, P. (1993). Watering is crucial to plants: [ALL Edition]. Telegram & Gazette, G1. https://search-proquest-com.dianus.libr.tue.nl/newspapers/watering-is-crucial-plants/docview/268517145/se-2?accountid=27128

This paper explain why it is important that plants get the right amount of water.

User Needs and Preferences

People with Down syndrome have different needs and preferences compared to people without intellectual disabilities. A good product should address all of the users needs and as many possible preferences. So in order to develop a good product one should have a clear idea of what these needs and preferences are. To gather this information we have called several care-institutions asking them if they would be interested in helping us answer some questions and/or help test the first prototype. Secondly, we decided to also do a literary study into this subject to obtain even more information from other sources.

From the literature we have found that language development is moderately to severely compromised in some children with DS and that therefore most individuals with DS also have less developed language skills at all ages in life compared to people without an intellectual disability (Lemons, 2010) and (Chapman, 2000) To accommodate for this lack in linguistic skills there are a few things that one can do to improve communication with people with DS. Use repitition Show that you are pleased Be patient https://belovedshepherd.com/tips-communicating-with-a-person-with-downs-syndrome Helaas is dit geen echte source maar een website maar hier staat het wel heel duidelijk in.

Of course there are more items, but these were the ones that we identified to be the most important and the ones that we could play into.

From the care-institutions we concluded…………..

Lemons CJ, Fuchs D. Phonological awareness of children with Down syndrome: its role in learning to read and the effectiveness of related interventions. Res Dev Disabil. 2010 Mar-Apr;31(2):316-30. doi: 10.1016/j.ridd.2009.11.002. Epub 2009 Nov 30. PMID: 19945821.

Chapman, Robin & Seung, Hye-Kyeung & Schwartz, Scott & Bird, Elizabeth. (2000). Predicting Language Production in Children and Adolescents With Down Syndrome. Journal of speech, language, and hearing research : JSLHR. 43. 340-50. 10.1044/jslhr.4302.340.

Questionaire answers from a caretaker

In order to get a deeper understanding how people with Down's syndrome would or could react to our project contact was sought with a caretaker. This caretaker has around 10 years of experience with these particular patients, this means that the answers to the questions are usefull to the project at hand. In the following text first the questions will be posed after which the answers are written. Lastly some extra pointers given by the caretaker will be mentioned.

Q) What would people with Down's syndrome need in daily life that this plant can help with?(To combat boredom for example) A) Becoming more independant, that is a hot item at the moment. Caretakers want theur patients to be able to live as long as possible on their own.

Q) Do you think that our project can improve their daily life? A) Not only do plants make sure that there is cleaner/better quality of air in the patients room, but they also get thought to take care of the plant in a creative and playfull manner.

Q) Do you think that our project would need to het more funtions? A) Only sound might not be enough, it can become quite noise in care homes. But these patients also react very well to a combination of visual and auditive stimulation. The visual stimulation does not need to be complicated, colors would suffice, so for example a yellow light means more sunlight or a blue light means more water. This way they also get a more satisfactory feeling in the long run. These patients also forget general tasks quite a bit, this would be giving water in regular intervals for example, a solution would be the use of so called 'pictokaarten' and a weekly schedule. These pictokaarten are designed to not give any confusion on the action that has to be taken and the weekly schedule gives them a place where they can easily find the tasks that have to be done on a certain day. Direct tasks, for example more sunlight, would be perfect in an visual/auditive stimulation.

Q) What would be the best way for our project to approach people with Down's syndrome? A) The best way to approach them is in a positive and cheerfull way yet the message has to be simple and clear, and thank/compliment them if they performed the task well.

  For our project the following 3 suggestions were given:
  1. 'I am thirsty, could you give me some water?', 'Thank you, now I am not thirsty anymore.'
  2. 'I am quite hot, would you mind placing me in the shade?', 'Now I am nice and cool, thank you.'
  3. 'I am quite cold, would you mind placing me in the sun?', 'Thank you, now I am not cold anymore.'
  What might help the patients in the long run is some sort of checklist, these already get used now to see if they keep getting a better understanding of the tasks they are performing. This checklist could ask what color lamp has 
  what meaning for example, this can then be excecuted with their caretaker.

Some general remarks.