R. Van Ham, B. Vanderborght, M. Van Damme, B. Verrelst and D. Lefeber (2006). "MACCEPA: the mechanically adjustable compliance and controllable equilibrium position actuator for 'controlled passive walking': Difference between revisions
Jump to navigation
Jump to search
Line 6: | Line 6: | ||
==Benefits == | ==Benefits == | ||
This approach is was created in order to achieve three main goals, namely better energy efficiency | This approach is was created in order to achieve three main goals, namely: | ||
*better energy efficiency | |||
*better control over the force of robot "actions" | |||
*better balance |
Revision as of 07:52, 25 February 2021
Summary
Main idea
Robots can be stiff and rigid, but that is not the only option that one has when creating a robot. In order to make robots move more human-like, a mechanism is introduced where actuators with "adaptive compliance" are created tested:
- “Nowadays, more and more research groups working on bipeds have started to believe that natural biped walking is a combination of both approaches, requiring actuators with adaptable compliance (inverse of stiffness), resulting in energy efficient walking at different speeds.”
- “Human joints are actuated by at least two muscle groups, giving them the possibility to change the stiffness of a joint and to control the equilibrium position. By controlling both the compliance and the equilibrium positions, a variety of natural motions is possible, requiring a minimal energy input to the system.”
Benefits
This approach is was created in order to achieve three main goals, namely:
- better energy efficiency
- better control over the force of robot "actions"
- better balance