PRE2020 3 Group4: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 25: Line 25:
HartslagNu is the paging system that calls up emergency responders via a message on the mobile phone to go to the scene in case of possible resuscitation. In many cases, emergency responders (Also known as "Burgerhulpverleners") are able to respond quicker to an emergency situation than the emergency services, '''due to the basic concept of coverage (work this out, or leave it out)'''. It is important to be able to notify the emergency responders as quickly as possible, to keep this time advantage.
HartslagNu is the paging system that calls up emergency responders via a message on the mobile phone to go to the scene in case of possible resuscitation. In many cases, emergency responders (Also known as "Burgerhulpverleners") are able to respond quicker to an emergency situation than the emergency services, '''due to the basic concept of coverage (work this out, or leave it out)'''. It is important to be able to notify the emergency responders as quickly as possible, to keep this time advantage.


The current state of the HartslagNu system in the Netherlands is well seen from a technological standpoint. The user gets to enter their home and/or work address online or within the HartslagNu app, and based on that information the user can be contacted via SMS in the case of an emergency. In addition to this basic feature, the application also allows the user to turn on their location and let the application track their GPS signal. When the user is near an emergency location, the application sends them a notification containing the location of a possible resuscitation. It is important to make the distinction between the SMS-based function and the application-based function, these two can work separately from each other and in addition to each other.
The current state of the HartslagNu system in the Netherlands is well seen from a technological standpoint. The user gets to enter their home and/or work address online or within the HartslagNu app, and based on that information the user can be contacted via SMS in the case of an emergency. In addition to this basic feature, the application also allows the user to turn on their location and let the application track their GPS signal. When the user is near an emergency location, the application sends them a notification containing the location of a possible resuscitation. It is important to make the distinction between the SMS-based function and the application-based function, these two can work separately from each other and in addition to each other. HartslagNu thus assumes that everyone has a mobile-phone, but not everyone (always) has an internet connection on his/her phone. To use the application the


Emergency responders are trained to start up the resuscitation, preferably using an AED (Automatic External Defibrillator). These AED's are publically available all over the Netherlands and are usually protected by a pin code on a so-called AED box. The Emergency responders are able to get access to this AED by retrieving the pin code either via SMS or in the application. This, however, takes time and sometimes does not work at all. This time loss can result in the loss of lives or the cause of brain damage at the victims' end.
Emergency responders are trained to start up the resuscitation, preferably using an AED (Automatic External Defibrillator). These AED's are publically available all over the Netherlands and are usually protected by a pin code on a so-called AED box. The Emergency responders are able to get access to this AED by retrieving the pin code either via SMS or in the application. This, however, takes time and sometimes does not work at all. This time loss can result in the loss of lives or the cause of brain damage at the victims' end.

Revision as of 11:05, 24 February 2021

Group members

Name Student ID Department Email address
Mark den Besten 1022231 Automotive Technology m.d.besten@student.tue.nl
Yann van Eijk 1454447 Mechanical Engineering j.h.m.v.eijk@student.tue.nl
Ilse Schuckman 1239641 Electrical Engineering i.schuckman@student.tue.nl
Rik Schutte 1005841 Psychology & Technology r.j.r.schutte@student.tue.nl
Roel Wijands 1235389 ? ?

Problem statement

Every minute is crucial when providing aid to someone who has an out-of-hospital cardiac arrest (OHCA). The highest survival rates are achieved when the patients receive defibrillation as fast as possible (Jafri, 2021). The time it takes for an ambulance to arrive, however, is usually too long to ensure good survival odds for the patient (Solanki, 2017). In order to reduce the average time between an arrest and defibrillation, automatic external defibrillators (AEDs) are placed in public areas. These AEDs are placed in cabinets that are often locked, so they are protected from acts like vandalism. The people that can access them are usually the owner(s), their employees, and citizen responders. Citizen responders are people who have followed CPR and AED courses and are registered in a national database. When an OHCA occurs, nearby citizen responders are alerted via text message to the location of the closest AED and the place of the incident (Burgerhulpverlening 2021). They have an app on their phone which provides them with the code that unlocks the cabinet. However, because the situation is both stressful and extremely time-sensitive, the time and effort it takes to read and input a code correctly is unwanted. The aim of this project is to remove this process and thereby reduce the average time between an arrest and defibrillation.

How it currently works

HartslagNu is the paging system that calls up emergency responders via a message on the mobile phone to go to the scene in case of possible resuscitation. In many cases, emergency responders (Also known as "Burgerhulpverleners") are able to respond quicker to an emergency situation than the emergency services, due to the basic concept of coverage (work this out, or leave it out). It is important to be able to notify the emergency responders as quickly as possible, to keep this time advantage.

The current state of the HartslagNu system in the Netherlands is well seen from a technological standpoint. The user gets to enter their home and/or work address online or within the HartslagNu app, and based on that information the user can be contacted via SMS in the case of an emergency. In addition to this basic feature, the application also allows the user to turn on their location and let the application track their GPS signal. When the user is near an emergency location, the application sends them a notification containing the location of a possible resuscitation. It is important to make the distinction between the SMS-based function and the application-based function, these two can work separately from each other and in addition to each other. HartslagNu thus assumes that everyone has a mobile-phone, but not everyone (always) has an internet connection on his/her phone. To use the application the

Emergency responders are trained to start up the resuscitation, preferably using an AED (Automatic External Defibrillator). These AED's are publically available all over the Netherlands and are usually protected by a pin code on a so-called AED box. The Emergency responders are able to get access to this AED by retrieving the pin code either via SMS or in the application. This, however, takes time and sometimes does not work at all. This time loss can result in the loss of lives or the cause of brain damage at the victims' end.

Objectives

The main objective is to design a new locking system for a publicly placed AED. First, anyone with the right clearance has to be able to access the AED as fast as possible, without having to do any additional actions like filling in a code. Second, the AED must be protected from incidents like vandalism and should not be accessible to anyone that is not authorized to. To meet these requirements, the design will include an app on the smartphone of someone who should have access and a way to determine the distance between this person and the AED. When someone has the app and is physically close to the AED, the cabinet should be unlocked automatically without any other user input needed.

Users

There are two main users that have to interact with the AED locker.

Firstly, the first responders to an emergency, the so-called “burgerhulpverleners”. A first responder gets a notification on his cellphone and has to, as quickly as possible, get an AED to the victim that is having an emergency. An AED should get to the victim within 6 minutes (bhvnederland, 2018), every second counts. A first responder should therefore have quick and easy access to the AED. Quickly, because lives are at stake. Easily, because in the heat of the moment a first responder might not think logically and slowly. The first responder should not have to think about getting a door unlocked.

Secondly, the owners and maintainers of the AED and its locker. To put an AED outside is voluntary. Therefore when an AED is damaged or lost it’s a loss for the owner. An AED should be sufficiently protected from malicious users. Right now a pin code is used for this (HartslagNu, 2021). The maintainers also would like to keep their costs and maintenance low. So it should not cost a lot extra. Additionally, these owners already have a locker that functions well. They do not want to buy a new one before the old one is written off.

Additionally, there is the owner of the app and database of all the AEDs in the Netherlands, HarstslagNu. If we improve the interaction between the AED lockers and their app. It should be easy to implement. There should also be some new entry for their database, of what type of locker it is. Especially in the beginning when not all lockers are upgraded. The app should know what kind of locking system the locker uses.

User requirements

Brain damage can occur within 6 minutes of cardiac arrest (bhvnederland, 2018). Considering the average response time for civilian first responders is between 5.5 and 7.5 minutes (Dagblad van het Noorden, 2019), every second counts. As such, the box housing the AED should open in no less than 15 seconds to ensure quick access.

To make it easy to open the box, it should not require any extra operations from the user. So, during an emergency, opening the app should not be required to open the box.

The users also require the AED to still be in the box. This involves creating a tamper-resilient box with a robust locking mechanism that keeps unwanted people out while maintaining ease of use for the certified users. Since it is connected to an online system, this framework also requires tight security such that people cannot falsely certify themselves and gain access to the AED.

In case of a bug in the app or the system malfunctioning, an alternative way of opening the box containing the AED needs to be present as well. This is also for users that do not wish to use the app, whether that is because of a lack of technological understanding or a desire to protect all their data. As such, the new way of opening the box needs to be an addition rather than a replacement.

When there is no active emergency, the lock should not open, even when certified users of the app walk past. This excludes maintenance. This is to prevent the box from randomly opening when users walk past it unknowingly.

When the AED has been removed from the box, it should be easy for the first responder to return the AED to the box and to close and lock the box. The box should not be locked when the AED is not present in it. This prevents the box from locking itself when the AED is not contained in it. This way the owner can perform the mandatory check-up of the AED.

For the owners, it is vital that the system is easy to be installed and requires very little maintenance. High levels of upkeep would be bothersome for the owners and would also disincentivize people from getting AEDs in the first place. While an initial installation has to be done, including the necessary wiring, further upkeep must be kept at a minimum. Since the AED needs to be tested once a year, the lock should also be tested once a year at a minimum.

The price of this newly developed technology should be reduced to encourage buyers to implement this device on their AEDs. The cost for upkeep should also not be increased by more than 3 percent of the existing cost. This is due to the high cost of upkeep as is (Medisol), and people might get deterred from installing an AED if the costs get even higher.

Design options

Method Brief description Functionality needed for the cabinet* Additional actions needed to function** Reliability Maintenance/Risk
Bluetooth Anyone with the app can connect to the cabinet via Bluetooth. If a connection is established, the cabinet will open. -Bluetooth None High All electronics can be equipped inside the cabinet, reducing risk of damage.
GPS GPS is used to determine the user's position relative to the AED. If they are close, the cabinet receives a signal and opens. -Internet or GSM None High The current implementation already makes use of GPS. All electronics can be equipped inside the cabinet, reducing risk of damage.
Wi-Fi Direct When the user receives an alert via the app, their phone will start searching for devices to pair with via Wi-Fi Direct. The cabinet will open when a connection has been established. -Wi-Fi
-Other
The user has to finalize the pairing between the smartphone and the cabinet in some way. Possible options: Bluetooth, NFC, button press. High, but lower than Bluetooth or GPS due to the additional connection/method needed. Most/all electronics can be equipped inside the cabinet, reducing risk of damage.
Biometric Anyone who downloads the app must submit fingerprints/facial picture to a database. The cabinet will open to anyone that matches. -Internet
-Camera or fingerprint scanner
The user has to pass a biometric lock. Facial recognition is fallible, especially for people with a darker ethnicity. (Klare, 2012) A database has to be updated regularly. The exteriors of all cabinets have to be equipped with electronics, increasing risk of damage.
NFC The user transmits the code received through the app via NFC. When installed, each cabinet is given a unique code. -NFC-tag The user has to hold their phone to a scanner. The high stress situation may cause the user's hands to tremble too much. All cabinets need to be equipped with an NFC tag on the exterior, increasing risk of damage.
QR-code The cabinet has a camera that can read a QR-code generated by the app. Each cabinet that is installed has its own unique code that does not change. -Camera The user has to hold their phone to a camera. May not be reliable in poor lighting conditions. Due to the high stress situation, the user's hands may tremble too much. Electronics vulnerable to damage have to be installed on the exterior of all cabinets, increasing risk of damage.

*Assuming the user has a modern smartphone with up-to-date functionality.

**Apart from the user having the app and being in the vicinity.

Selected design

Risk scenario analysis

State of the Art

[1] Cho, H., Ji, J., Chen, Z., Park, H., Lee, W. (2015). Measuring a Distance between Things with Improved Accuracy. Procedia Computer Science, 52, 1083-1088. Retrieved from: https://doi.org/10.1016/j.procs.2015.05.119

A Bluetooth based design for measuring distance between objects using Bluetooth Low-Energy (BLE). The results showed that it is possible to attain an accuracy of 90% in a radius of 1.5 meter.


[2] Drawil, N. M., Amar, H. M., Basir, O. A. (2013). GPS Localization Accuracy Classification: A Context-Based Approach. IEEE Transactions on Intelligent Transportation Systems, 14(1), 262-273. Retrieved from: https://ieeexplore.ieee.org/document/6295661

A study that compares the pros and cons of different GPS localization methods.


[3] Eisenberg, M. S., Horwood, B. T., Cummins, R. O., Reynolds-Haertle, R., & Hearne, T. R. (1990). Cardiac arrest and resuscitation: A tale of 29 cities. Annals of Emergency Medicine, 19(2), 179-186. doi:10.1016/s0196-0644(05)81805-0

Old article at the base of fast-response knowledge investigating the survival rates in 29 different cities depending on the rate and speed of response including which method was used by whom. So option like direct CPR or some time passing before someone with AED arrives. Concludes faster CPR is key to survival but still defibrillation is needed.


[4] Everything you need to know about smart locks. (2021, February 01). Retrieved February 12, 2021, from https://www.safety.com/smart-locks/guide/

Article about safety surrounding smartlocks. This article discussed the opportunities as well as the pros and cons.


[5] H. Oguma, N. Nobata, K. Nawa, T. Mizota and M. Shinagawa, "Passive keyless entry system for long term operation," 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Lucca, 2011, pp. 1-3, doi: 10.1109/WoWMoM.2011.5986125.

Talks about keyless entry systems of vehicles. Makes use of synchronized keys.


[6] Jeong, H. J., Lee, W., Lim, J., & Hyun, W. (2015). Utilizing a bluetooth remote lock system for a smartphone. Pervasive and Mobile Computing, 24, 150-165. doi:10.1016/j.pmcj.2015.07.010

Talks about a Bluetooth lock and how this should work with an smartphone app. However the phone first has to pair with the smartphone so in this state does not work for multiple unknown devices.


[7] Koster, R. W. (2013). Modern BLS, dispatch and AED concepts. Best practice & research. Clinical anaesthesiology, 27(3), 327–334. Retrieved from: https://doi.org/10.1016/j.bpa.2013.07.005

A study that presents the current strategies for OHCAs. It concludes that AEDs are of critical importance when providing aid, especially before the arrival of an ambulance.


[8] Mair, N., Mahmoud, Q. H. (2012). A collaborative Bluetooth-based approach to localization of mobile devices. 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 363-371. Retrieved from: https://eudl.eu/doi/10.4108/icst.collaboratecom.2012.250437

Another design based on Bluetooth to determine position. It uses the combined Bluetooth connections of multiple devices. The results also show that, while it is slower than GPS, Bluetooth localization is faster than Wi-Fi or cellular methods.


[9] R. Karani et al., "Implementation and design issues for using Bluetooth low energy in passive keyless entry systems," 2016 IEEE Annual India Conference (INDICON), Bangalore, 2016, pp. 1-6, doi: 10.1109/INDICON.2016.7838978.

Another Bluetooth lock. This one with a focus on low-power Bluetooth. It uses a whitelist for checking which devices may unlock. The white list is controlled by an admin terminal.


[10] Smith, C. M., Lim Choi Keung, S. N., Khan, M. O., Arvanitis, T. N., Fothergill, R., Hartley-Sharpe, C., . . . Perkins, G. D. (2017). Barriers and facilitators to public access defibrillation in out-of-hospital cardiac arrest: A systematic review. European Heart Journal - Quality of Care and Clinical Outcomes, 3(4), 264-273. doi:10.1093/ehjqcco/qcx023

This article explores the different areas which affect the response in assisting in defibrillation and partaking in accessing defibrillators. The study concludes that there is very little evidence in this field and more research should be done into these different factors.


[11] Smith, C. M., Wilson, M. H., & Perkins, G. D. (2018). Reply to: Letter by Derkenne et al. regarding the Article, ‘the use of trained volunteers in the response TO Out-of-hospital cardiac Arrest – The GoodSAM experience.’. Resuscitation, 125, E4. doi:10.1016/j.resuscitation.2018.02.002

The investigation looking at GoodSAM in England, a system somewhat similar to HartslagNu in the Netherlands investigating the acceptance of the system and willingness of people to actually partake in resuscitation including accessing an AED.


[12] Smith, C. M., Wilson, M. H., Ghorbangholi, A., Hartley-Sharpe, C., Gwinnutt, C., Dicker, B., & Perkins, G. D. (2017). The use of trained volunteers in the response to out-of-hospital cardiac arrest – the goodsam experience. Resuscitation, 121, 123-126. doi:10.1016/j.resuscitation.2017.10.020

Article exploring the effectiveness of more participation of ‘bystanders’ in performing in a resuscitation. This participation is achieved via the GoodSAM application which alerts volunteers nearby of a resuscitation request.


[13] Stieglis, R., Zijlstra, J. A., Riedijk, F., Smeekes, M., van der Worp, W. E., & Koster, R. W. (2020). AED and text message responders density in residential areas for rapid response in out-of-hospital cardiac arrest. Resuscitation, 150, 170–177. Retrieved from: https://doi.org/10.1016/j.resuscitation.2020.01.031

A study that shows the effects of increasing the density of AEDs and Text Message responders in residential areas. It concludes that the text message system is most effective when there are at least two AEDs and ten TM-responders per square kilometer. The number of patients who were defibrillated in under 6 minutes doubled when these two conditions were met.


[14] Waar zijn nog AED's Nodig? (2020, September 10). Retrieved February 12, 2021, from https://hartslagnu.nl/aed/waar-in-nederland-zijn-nog-aeds-nodig/

Site with an interactive map showecasing the current spaces where there isn’t an AED in the near vicinity. Based on a history of resuscitation attempts. The rule of thumb here is that there should always be an AED within a 500m radius.

Planning

Week Task 1 Task 2 Task 3 Task 4 Milestones (end of the week)
Week 1 Pick subject Collect information Make a planning Update the wiki-page Subject chosen
Week 2 Work out the different types of connections Decide on the framework of the app Electrical design of the lock Update the wiki-page Design plan has been made
Week 3 Bill of materials Work out final design details Begin working on the code Update the wiki-page None/week of progress
Week 4 Make the prototype Continue working on the app Make a box for demonstration Update the wiki-page App and box are finished
Week 5 Continue making the prototype Make test plan and test prototype Test individual parts Update the wiki-page Analysis of the prototype has been done
Week 6 Improving on the prototype Make final design Make test plan and test final design Update the wiki-page Final design is finished
Week 7 Begin filming the presentation Edit the film for demonstration Update the wiki-page Film for demonstration is finsihed
Week 8 Peer review Last preparations for demonstration Finalize the wiki-page Presentation/demonstration

Work done per week

Week 1

Name Total [h] Break-down
Mark den Besten 7 Meetings [3h], Starting lecture [1h], Research and writing User part [3h]
Yann van Eijk 7 Meetings [3h], Starting lecture [1h], Research and writing Approach, milestones and deliverables [3h]
Ilse Schuckman 8.5 Meetings [3h], Starting lecture [1h], Research and writing Problem statements & objectives [4.5h]
Rik Schutte 8 Meetings [3h], Starting lecture [1h], Research and writing User requirements [4h]
Roel Wijnands 7 Meetings [3h], Starting lecture [1h], Research and checking references [3h]

Week 2

Name Total [h] Break-down
Mark den Besten Meetings [4h]
Yann van Eijk 10 Meetings [4h], Rewriting User requirements [2h], Implementing work done in Week 1 on the wiki page [1h], Fixing SotA and References [3h]
Ilse Schuckman 7.5 Meetings [4h], Research and Design options [3h], updating wiki [0.5h]
Rik Schutte Meetings [4h]
Roel Wijnands Meetings [4h]

Week 3

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

Week 4

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

Week 5

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

Week 6

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

Week 7

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

Week 8

Name Total [h] Break-down
Mark den Besten
Yann van Eijk
Ilse Schuckman
Rik Schutte
Roel Wijnands

References

[1] Bhvnederland. (2018, July 27). Yearly 5,300 people die in The Netherlands due to heart attack. Retrieved February 21, 2021, from https://www.bhvnederland.nl/bhv-nieuws/aed-infographic-en

[2] Burgerhulpverlening. (2021, February 18). Retrieved February 21, 2021, from https://nl.wikipedia.org/wiki/Burgerhulpverlening

[3] Dagblad van het Noorden. (2019, October 07). Hartstichting: ,,MEER AED'S nodig om EMMEN hartveilig te maken". Retrieved February 21, 2021, from https://www.dvhn.nl/drenthe/emmen/Hartstichting-Meer-AED%E2%80%99s-nodig-om-Emmen-hartveilig-te-maken-24897372.html

[4] HartslagNu. (2021, January 21). HartslagNu app. Retrieved February 21, 2021, from https://hartslagnu.nl/burgerhulpverlening/hartslagnu-app/

[5] Jafri, S. (2021, January 30). Rapid defibrillation important for survival: Avive solutions. Retrieved February 21, 2021, from https://avive.life/guides/importance-of-time-to-defibrillation/

[6] Klare, B.F., Burge, M.J., Klontz, J.C., Vorder Bruegge, R.W., Jain, A.K. (2012). Face Recognition Performance: Role of Demographic Information. IEEE Transactions on Information Forensics and Security, vol. 7, no. 6.

[7] Medisol. (n.d.). Onderhoudskosten Van de AED. Retrieved February 21, 2021, from https://www.aedwinkel.nl/onderhoudskosten-aed

[8] Solanki, M. (2017, October 28). Two-thirds of DUTCH ambulance services do not respond within the set time limit. Retrieved February 21, 2021, from https://www.iamexpat.nl/expat-info/dutch-expat-news/two-thirds-dutch-ambulance-services-do-not-respond-within-set-time-limit