PRE2018 4 Group1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 99: Line 99:
====Summary====
====Summary====
There exists a "co-robot" cane that can guide blind people through an indoor environment, using algorithms that allow it to navigate and estimate the pose of the user.<ref>Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167</ref> There is also a pair of glasses for the blind that helps them navigate, and this too has proven to be effective in indoors situations.<ref>Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498</ref>. The sensors used here are of low cost and have easy integration, so this device can be affordable for most users. There are more electronic devices that aim to aid blind people in their mobility, giving feedback by using audio feedback and/or vibration.<ref>Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588</ref><ref>Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706</ref>
There exists a "co-robot" cane that can guide blind people through an indoor environment, using algorithms that allow it to navigate and estimate the pose of the user.<ref>Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167</ref> There is also a pair of glasses for the blind that helps them navigate, and this too has proven to be effective in indoors situations.<ref>Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498</ref>. The sensors used here are of low cost and have easy integration, so this device can be affordable for most users. There are more electronic devices that aim to aid blind people in their mobility, giving feedback by using audio feedback and/or vibration.<ref>Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588</ref><ref>Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706</ref>
===Guide Dog Robot (MELDOG)[Tachi, S., & Komoriya, K. (z.d.). Tachi_Lab - Guide Dog Robot (MELDOG)]===
====Relevance====
This article provide a study from 1977 stating that a more suitable (robotic) system is required to guide blind people in their mobility and thereby increasing their independence. For this, the Guide Dog Robot MELDOG is designed with the implementation on how to navigate, how to avoid obstacles and to warn the specific blind person. This article is very mathematical and came up with a complete plan on how to design such a system.
====Summary====
For blind people, independence is one of the most strongest desires to have. Blind people are always seen as helpless, it is seen as an handicap and there mobility is for course less strong than non-blind people, which will always put them in a situation as were there will be seen different or even be discriminated. A guide dog aids to increasing this mobility by supporting in three different ways:
1. the blind person's next step,
2. his/her directional orientation,
3. his/her navigation along reasonably long travel path on both familiar and unfamiliar terrain
In this paper, the design concept of the Guide Dog Robot MELDOG is described, as well as the navigation method using an organized map and landmarks. Next up an obstacle detection/avoidance system based on the ultrasonic environment measurement and man-machine communication is described.
For this to be achieved, the robot needs to require:
(a) A guiding system for itself by using an organized map of the environment and registered landmarks in the environment.
(b) How the robot finds obstacles which are not registered on the map and avoids them,
(c) How the robot informs its blind master about the route and the obstacles detected.
===Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs[Banks, M. R., Willoughby, L. M., & Banks, W. A. (2008). Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 9(3), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007]===
====Relevance====
In order to be able to rely on a robotic guide dog in the first place, a comparison has to be made between a living and a robotic dog. In this study the robotic dog AIBO has been used to treat loneliness in elderly patients in long-term care facilities (LTCF). Does a robotic dog decrease the level of attachment to people of the elderly people and thereby reduce the level of loneliness as well?
====Summary====
The method for this study was facilitated using the animal-assisted therapy (AAT). This was done by the use of Sony’s AIBO, the robotic pet and a living pet. They used 12 participants for AIBO, 13 for the living dog and 13 for the control group. The control group did not receive AAT, so the expectation was that in this group the level of loneliness would be the highest. The experiment lasted for 8 weeks and the participants where asked about it during a questionnaire.
The results show that elderly living in long-term care facilities who received scheduled AAT with either a living or robotic dog were significantly less lonely than those who did not receive AAT. Unfortunately, no difference was found in effectiveness of a robotic dog in comparison to a living dog and that the attachment to either the living dog or AIBO did not reduce the level of loneliness for participants. However, participants who received the living dog had an higher level of attachment than those who received AIBO, but the difference was not statistically significant. Next to that, AIBO wasn’t used in its full potential. It was for instance not allowed to its voice or walk around. Therefore one cannot conclude that the robotic dog is better or worse in treating loneliness than a living dog.


==References==
==References==

Revision as of 15:21, 30 April 2019

Group 1

Group members Student number Study Email
Lotte van Gessel 1237708 x l.s.v.gessel@student.tue.nl
Piers da Camino Ancona Lopez Soligo 1015467 Biomedical Engineering p.h.d.camino.ancona.lopez.soligo@student.tue.nl
Sander Poot 1017804 Biomedical Engineering s.a.poot@student.tue.nl
Timon Heuwekemeijer 1003212 x t.m.heukemeijer@student.tue.nl
Jan van Leeuwen 1261401 x j.a.v.leeuwen@student.tue.nl

Brainstorm

Subject

Researching and redesigning robotic substitutes for service dogs that help blind people navigate

State of the Art research

Robots that can adapt like animals

Relevance

When designing a robotic service dog, a problem that can occur will be that the dog can become damaged while the user is out with the service dog. The following article is about how a robot can cope with problems in a similar way animals do.

Summary

In this article, a trial and error algorithm is proposed so that the robots can adapt to damage is under two minutes in a similar manner as animals. Current recovery typically involves two phases. The robot first needs to diagnose itself, which is followed by selecting the best plan to fix the problem. Problem is that it could be that not every situation is foreseen by the designer, and the robot does not have the right diagnosis or contingency plan to cope with the inflicted damage. Animals deal with injuries in a more trail and error based way. A similar algorithm could be implemented in robots to learn the robot different behaviors to injuries without the limitations to the engineers possible damage scenario’s. The current state-of-the-art algorithms for this are not suitable since they can’t cope with the curse of dimensionality. Other algorithms take up about 15 minutes and need some human demonstrations of some kind. Animals can do it in 2 minutes, so for robots it would be more practical to do so in a similar time. The main difference between animals and robots is that animals know the search space of behaviors and can therefore adapt intelligently. Robots would need to do the same in order to achieve a similar behavior. Robots used in the article store knowledge in a behavior-performance space. This helps them to cope with injuries by quickly discovering the behavior that would help in the injury at hand. [1]

Ethorobotics: A New Approach to Human-Robot Relationship.

Relevance

The robotic service dog should, besides it’s service duty, also serve as a kind of companion robot in order to build a good relationship with the user.

Summary

This article proposes a new approach to the relationship between the human and the robot. It focusses on the uncanny valley hypothesis. The uncanny valley states that humans will be more likely to interact between things that are more human-like, but when they become too similar they tend to avoid them.  

It is stated that biological agents need to be able to make a difference in one of the following categories: same vs different species, familiar vs unfamiliar conspecifics and familiar conspecifics vs individuals. The division in these categories determine the way in which both agents will interact with one another. The way in which humans can divide in these categories is learned by some specific pattern of cues. This learning can take place in a certain period in the development of the person. The uncanny valley hypothesis offers two options for social robots. They should either achieve perfect similarity to humans, or humans need to be exposed to social robots from their first year of life on, so they can become more used to the robot. Both options have some problems. It is then argued that the hypothesis can be extended to a symmetric landscape, in which there is also a part after perfect similarity.

The ethological approach proposed is focused on the function of behavior, related to the environment in which the species is evolved. It states that instead of aiming for human similarity, we should aim that the robot is most suited to the function and environment that it will need to operate in. This way, the uncanny valley is avoided on both sides of the landscape. A robot designed in this way, would have its own niche in the environment. This approach has the following benefits:

  • Robots have their own evolution, without interfering with that of the human they interact with
  • There is no competition between humans and robots
  • If the robots function is no longer needed, or it does not live up to the humans expectations, it can simply be seen as irrelevant and go extinct.

The interaction between robots and humans can be linked to that of humans and dogs. In this relationship, the human interact with a morphologically very different species, which also behaves differently, in a sophisticated way. Dogs have a certain social competence, something that a social robot will also need to get so they can be integrated in society. This approach of ethorobotics suggests that social robots should be seen as a new species, and have their own niche in the environment at hand. In this way, the similarity to humans is irrelevant. Only resemblances to humans will be those needed to do its function. [2]

Legged robots

Relevance

The robotic replacement dog will likely look like a dog and thus it will move with legs. This is more difficult to do than for example wheels.

Summary

Legged robots, as one kind of mobile robots, can be used for tasks too dangerous or difficult for human to perform, eg, planetary exploration, disaster salvation and anti-terrorism action. Consequently, the issues of legged robots, including mechanical structure, stability analysis and control algorithms, have become an important research direction in the field of robotics in recent years. This paper surveys the current status with respect to legged robots, and describes the existent research approaches in terms of mechanical structure, stability analysis and control algorithms of legged robots. To conclude, this paper proposes the problems to be solved and discusses the future development of legged robots

Sensing Surrounding 3-D Space for Navigation of the Blind

Relevance

To make the dog usefull, it has to have state of the art 3D space navigation since it doesn't only have to move itself through but also help another person navigate

Summary

A range of adaptive technologies and devices has evolved since the 1960s to assist people who are blind in dealing with a variety of situations. The primary drawbacks included inconsistencies in feedback depending on various conditions (such as weather), possible disorientation caused by overuse of the sound space, and the fact that the information such devices provided was redundant to what the individuals could discern on their own in a more efficient manner using a cane or guide dog. The main drawbacks of existing assistive devices are the cumbersome hardware, the level of technical expertise required to operate the devices, and the lack of portability. These technological advances do not facilitate unobtrusive indoor navigation and learning from the environment. This limits employment and social opportunities for blind and visually impaired individuals. In summary, these technological advances target specific functional deficits but largely neglect social aspects and do not provide an integrated, multifunctional, transparent, and extensible solution that addresses the variety of challenges (such as independence) encountered in lives of blind people everyday

Existing Technology Aiding Visually Impaired

Relevance

In order to develop a product that aids the visually impaired, we need to know what already exists on the market. This enables us to improve upon this.

Summary

There exists a "co-robot" cane that can guide blind people through an indoor environment, using algorithms that allow it to navigate and estimate the pose of the user.[1] There is also a pair of glasses for the blind that helps them navigate, and this too has proven to be effective in indoors situations.[2]. The sensors used here are of low cost and have easy integration, so this device can be affordable for most users. There are more electronic devices that aim to aid blind people in their mobility, giving feedback by using audio feedback and/or vibration.[3][4]

Guide Dog Robot (MELDOG)[Tachi, S., & Komoriya, K. (z.d.). Tachi_Lab - Guide Dog Robot (MELDOG)]

Relevance

This article provide a study from 1977 stating that a more suitable (robotic) system is required to guide blind people in their mobility and thereby increasing their independence. For this, the Guide Dog Robot MELDOG is designed with the implementation on how to navigate, how to avoid obstacles and to warn the specific blind person. This article is very mathematical and came up with a complete plan on how to design such a system.

Summary

For blind people, independence is one of the most strongest desires to have. Blind people are always seen as helpless, it is seen as an handicap and there mobility is for course less strong than non-blind people, which will always put them in a situation as were there will be seen different or even be discriminated. A guide dog aids to increasing this mobility by supporting in three different ways: 1. the blind person's next step, 2. his/her directional orientation, 3. his/her navigation along reasonably long travel path on both familiar and unfamiliar terrain

In this paper, the design concept of the Guide Dog Robot MELDOG is described, as well as the navigation method using an organized map and landmarks. Next up an obstacle detection/avoidance system based on the ultrasonic environment measurement and man-machine communication is described. For this to be achieved, the robot needs to require: (a) A guiding system for itself by using an organized map of the environment and registered landmarks in the environment. (b) How the robot finds obstacles which are not registered on the map and avoids them, (c) How the robot informs its blind master about the route and the obstacles detected.

Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs[Banks, M. R., Willoughby, L. M., & Banks, W. A. (2008). Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 9(3), 173–177. https://doi.org/10.1016/j.jamda.2007.11.007]

Relevance

In order to be able to rely on a robotic guide dog in the first place, a comparison has to be made between a living and a robotic dog. In this study the robotic dog AIBO has been used to treat loneliness in elderly patients in long-term care facilities (LTCF). Does a robotic dog decrease the level of attachment to people of the elderly people and thereby reduce the level of loneliness as well?

Summary

The method for this study was facilitated using the animal-assisted therapy (AAT). This was done by the use of Sony’s AIBO, the robotic pet and a living pet. They used 12 participants for AIBO, 13 for the living dog and 13 for the control group. The control group did not receive AAT, so the expectation was that in this group the level of loneliness would be the highest. The experiment lasted for 8 weeks and the participants where asked about it during a questionnaire.

The results show that elderly living in long-term care facilities who received scheduled AAT with either a living or robotic dog were significantly less lonely than those who did not receive AAT. Unfortunately, no difference was found in effectiveness of a robotic dog in comparison to a living dog and that the attachment to either the living dog or AIBO did not reduce the level of loneliness for participants. However, participants who received the living dog had an higher level of attachment than those who received AIBO, but the difference was not statistically significant. Next to that, AIBO wasn’t used in its full potential. It was for instance not allowed to its voice or walk around. Therefore one cannot conclude that the robotic dog is better or worse in treating loneliness than a living dog.

References

[3]

  1. Ye, C., Hong, S., Qian, X., & Wu, W. (2016). Co-Robotic Cane: A New Robotic Navigation Aid for the Visually Impaired. IEEE Systems, Man, and Cybernetics Magazine, 2(2), 33–42. https://doi.org/10.1109/msmc.2015.2501167
  2. Bai, J., Lian, S., Liu, Z., Wang, K., & Liu, D. (2018). Virtual-Blind-Road Following-Based Wearable Navigation Device for Blind People. IEEE Transactions on Consumer Electronics, 64(1), 136–143. https://doi.org/10.1109/tce.2018.2812498
  3. Patil, K., Jawadwala, Q., & Shu, F. C. (2018). Design and Construction of Electronic Aid for Visually Impaired People. IEEE Transactions on Human-Machine Systems, 48(2), 172–182. https://doi.org/10.1109/thms.2018.2799588
  4. Shoval, S., Ulrich, I., & Borenstein, J. (2003). Robotics-based obstacle-avoidance systems for the blind and visually impaired - Navbelt and the guidecane. IEEE Robotics & Automation Magazine, 10(1), 9–20. https://doi.org/10.1109/mra.2003.1191706