PRE2018 3 Group17: Difference between revisions
Line 45: | Line 45: | ||
* (Large Scale) Terror attacks | * (Large Scale) Terror attacks | ||
These disasters each have their own requirements for proper functioning, luckily these requirements can be narrowed down to being able to avoid collision with objects, withstand high and low temperatures and being resistant to rough weather. The system should also be able to move past small crevices while avoiding collision. | These disasters each have their own requirements for proper functioning, luckily these requirements can be narrowed down to being able to avoid collision with objects, withstand high and low temperatures and being resistant to rough weather. The system should also be able to move past small crevices while avoiding collision. | ||
= Objectives = | = Objectives = |
Revision as of 10:04, 19 February 2019
Group members
Group Members | Student nr. |
Diederik Geertsen | 1256521 |
Cornelis Peter Hiemstra | 0958497 |
Joël Peeters | 0939193 |
Benn Proper | 0959190 |
Laila Zouhair | 1260529 |
All Robot Ideas
Below are all ideas that were thought up for the robots everywhere project, they are ordered by the order in which they were thought up. The final idea that was elaborated on was the disaster observation drones.
- Breakfast bot
- Robot to remove microplastics from water
- Clothes folding robot
- Building guidance robot
- Disaster observation drones
Problem Description
The search for survivors after a disaster is an extremely time sensitive matter. Localisation and retrieval of victims should occur in an efficient manner, but due to the nature of the disasters this is not always possible. Examples of these include the damage of roads which hinder rescue teams that are moving towards the survivors, due to damage to the environment survivors cannot be found easily if they are stuck inside of a building. A system must be devised that can help rescue teams with finding these survivors and routing an efficient course towards them.
This system should ideally be usable in the following disasters:
- Forest fires
- Earthquakes
- Floods
- Hurricanes or other weather related disasters
- Nuclear disasters
- (Large Scale) Terror attacks
These disasters each have their own requirements for proper functioning, luckily these requirements can be narrowed down to being able to avoid collision with objects, withstand high and low temperatures and being resistant to rough weather. The system should also be able to move past small crevices while avoiding collision.
Objectives
Solution
Requirements
Approach
In order to complete the project, first, a thorough literature study will be conducted that will be used to determine the state-of-the-art regarding drone technology as well as their current use in natural disasters and regarding the current other methods of observation during natural disasters and the problems and restrictions associated with these methods. Based on this information, an optimal observation strategy for a certain set of defined scenario's will be designed, based on the abilities of drones and maximizing the amount of new information a single drone can deliver. To provide evidence of the working of this strategy, a simulation will be made that shows how a network of drones would operate in such a disaster area. If enough time is left after these deliverables are finished, a small-scale test setup using a few drones can be used to show the functionality of the network in reality. The final report will exist of a literature study, an explanation of the optimized observation strategy, and the simulation. It will also include an expansive explanation of the choices made during each part of the project.
Milestones
The three main milestones that need to be reached are the finishing of the literature study, the observation strategy and the simulation.
Planning
Week 1
Problem-statement and objectives (Cornelis and Benn)
State-of-art (Every member provides at least five sources)
Users and their requirements (Diederik)
Approach, planning, milestones, and deliverables (Laila and Joël)
Week 2
Updated problem description
Concrete planning for project
Analysis of literature sources (Laila, Benn, and Joël)
Requirement analysis
USE cases
Task division for the report/wiki
Concrete plan
Update wiki (Laila)
Simulation methods (Diederik and Cornelis)
Week 3-6
Plan for the simulation
Dividing the tasks for the simulation
Work on simulation
Checking the RPC’s
Analysis of decisions made for the simulation and update if needed
Update the wiki
Literature study
Work on the report
Week 7
Finalize simulation
Prepare presentation
Finalize the wiki
Week 8
Presentation
Hand in report
State of the art
State of the art Artikelen zijn regelmatig nogal vaag en onduidelijk, geven geen duidelijke conclusie
Existing components of the design
- 4 Drones become more affordable and the technologies become more advanced, this makes it increasingly more suitable to implement into real disasters. Talks about implementation requirements and about how drones increase the efficiency of rescue personnel even if they are not adept at using it.
- 5 Applications of drones in different kinds of disasters, floods, earthquakes, forest fires and nuclear disasters
- 14. Talks about the usage of drones as cellular network beacons in cities after some calamity. Presents a stochastic model to predict how many drones are necessary for a given situation. We could do something similar for our number.
- 13 Creates a solution for detecting natural obstacles such as trees, and proposes a type of sensor for this.
- 15. Discusses the differences in effectiveness between different kinds of camera techniques used in forest fire observation. Concludes that these camera\analysis techniques still have trouble distinguishing between forest fires of different types of foliage. Improvement on this could greatly improve the accuracy of prediction of the speed at which fire spreads.
- 17. Article discusses usage of fire detection algorithms from space, concludes that these detection methods are quite accurate and mature except for small or relatively cold fires. Reason why our project may be very useful.
- 24. Article talks about the recognition of humans in all resolutions of IR-photo's. Uses a set of learning pictures to teach the system how a human looks. Very good at finding humans, so state-of-the-art for detecting humans can be defined using this.
- 26.Another article about finding humans from camera imagery, this time combined with google maps data and includes an analysis of false positive rates.
- 18. Proposes HAC-ER, a system for cooperation between information-gathering agents and humans in disaster regions. Shows great promise, problems mainly arise due to airports not easily allowing UAVs in their active airspace.
Useful resources for the design
- 1 Talks about how drones can autonomously find survivors by scanning the environment. They offer a high potential for fast and efficient response during a rescue mission. What should the drone do to help the survivors. Needs to observe its environment to avoid a collision.
- 7 Talks about the feasability of a multi-tier drone architecture over single tier drones in terms of efficiency. This increases efficiency and reduces path loss.
- 12 Mainly talks about how paths are found for drones to follow. and how trajectory planning works, uses decision making and direction of target given a path to decide what to do.
- 22. Article discusses the benefits and drawbacks of two different communication methods for drone swarms, also explains them. Very useful and relevant for later stage of our project.
- 23. Article acts as an example of how to effectively set up a communication network for a 'swarm' of agents, how to get them to perform tasks. Super useful, but hard to follow.
- 25. Design for a fully autonomous/wireless drone charging station. Useful if we want to include a charging station in our strategy.
Complementary sources
- 2 Discusses failure of a drone system, espionage due to hacking, and autonomous finding of survivors. (Weinig text om er meer over te zeggen)
- 8 Discusses the useful sections of implementing drones in rescue scenarios, as well as how to manage certain aspects of it. It gives a summary of various communication aspects and issues related to their deployment.
- 9 Discussion on why opportunistic networks aren't more common in todays world
- 10 General applications for drones
- 11 Optimization approaches for different civil applications of drones and characteristics of those types of drones, drones are extremely versatile and new uses are always found for them.
- 16. Proposes usage of a network of drones, but does not provide further information on this network. Shows that drones are capable of carrying numerous pieces of useful equipment over longer distances when well-designed.
- 20. Article discusses general ethicalness of CCTV surveillance. Concludes that partially automated data analysis from these systems is more ethically preferable to manual analysis. Hard to relate to our case specifically, but could spark the discussion of ethicalness of our system.
- 21. Article discusses ethical feasibility of facial recognition systems. Seems unrelated to our project entirely.
Inaccessible sources
- 3 Presents a vision where the drones provide wireless communication between survivors and cellular infrastructure. (Geen toegang tot volledige artikel)
- 19. This article is not accessible using a TU licence. Abstract talks about integrating calculations for path planning between different scales of a system (i.e. destination of each agent vs. not crashing into each other etc.).
Total list
- 1 Talks about how drones can autonomously find survivors by scanning the environment. They offer a high potential for fast and efficient response during a rescue mission. What should the drone do to help the survivors. Needs to observe its environment to avoid a collision.
- 2 Discusses failure of a drone system, espionage due to hacking, and autonomous finding of survivors. (Weinig text om er meer over te zeggen)
- 3 Presents a vision where the drones provide wireless communication between survivors and cellular infrastructure. (Geen toegang tot volledige artikel)
- 4 Drones become more affordable and the technologies become more advanced, this makes it increasingly more suitable to implement into real disasters. Talks about implementation requirements and about how drones increase the efficiency of rescue personnel even if they are not adept at using it.
- 5 Applications of drones in different kinds of disasters, floods, earthquakes, forest fires and nuclear disasters
- 6 The use of MIMO for communication between drones (Extreme list of equations basically saying that it shows potential)
- 7 Talks about the feasibility of a multi-tier drone architecture over single tier drones in terms of efficiency. This increases efficiency and reduces path loss.
- 8 Discusses the useful sections of implementing drones in rescue scenarios, as well as how to manage certain aspects of it. It gives a summary of various communication aspects and issues related to their deployment.
- 9 Discussion on why opportunistic networks aren't more common in todays world
- 10 General applications for drones
- 11 Optimization approaches for different civil applications of drones and characteristics of those types of drones, drones are extremely versatile and new uses are always found for them.
- 12 Mainly talks about how paths are found for drones to follow. and how trajectory planning works, uses decision making and direction of target given a path to decide what to do.
- 13 Creates a solution for detecting natural obstacles such as trees, and proposes a type of sensor for this.
- 14. Talks about the usage of drones as cellular network beacons in cities after some calamity. Presents a stochastic model to predict how many drones are necessary for a given situation. We could do something similar for our number.
- 15. Discusses the differences in effectiveness between different kinds of camera techniques used in forest fire observation. Concludes that these camera\analysis techniques still have trouble distinguishing between forest fires of different types of foliage. Improvement on this could greatly improve the accuracy of prediction of the speed at which fire spreads.
- 16. Proposes usage of a network of drones, but does not provide further information on this network. Shows that drones are capable of carrying numerous pieces of useful equipment over longer distances when well-designed.
- 17. Article discusses usage of fire detection algorithms from space, concludes that these detection methods are quite accurate and mature except for small or relatively cold fires. Reason why our project may be very useful.
- 18. Proposes HAC-ER, a system for cooperation between information-gathering agents and humans in disaster regions. Shows great promise, problems mainly arise due to airports not easily allowing UAVs in their active airspace.
- 19. This article is not accessible using a TU licence. Abstract talks about integrating calculations for path planning between different scales of a system (i.e. destination of each agent vs. not crashing into each other etc.).
- 20. Article discusses general ethicalness of CCTV surveillance. Concludes that partially automated data analysis from these systems is more ethically preferable to manual analysis. Hard to relate to our case specifically, but could spark the discussion of ethicalness of our system.
- 21. Article discusses ethical feasibility of facial recognition systems. Seems unrelated to our project entirely.
- 22. Article discusses the benefits and drawbacks of two different communication methods for drone swarms, also explains them. Very useful and relevant for later stage of our project.
- 23. Article acts as an example of how to effectively set up a communication network for a 'swarm' of agents, how to get them to perform tasks. Super useful, but hard to follow.
- 24. Article talks about the recognition of humans in all resolutions of IR-photo's. Uses a set of learning pictures to teach the system how a human looks. Very good at finding humans, so state-of-the-art for detecting humans can be defined using this.
- 25. Design for a fully autonomous/wireless drone charging station. Useful if we want to include a charging station in our strategy.
- 26.Another article about finding humans from camera imagery, this time combined with google maps data and includes an analysis of false positive rates.
Users
What do the users require
Our users require a way to quickly get information about a large disaster. This would mean that we must automate this information gathering on different scales. The users have the problem that they cannot get to a disaster quick enough, and when they are at the disaster, they cannot get information quick enough because of the scale. For example, when there is a very large earthquake. The emergency services have no good way to get to the disaster, they do no immediately know the scale of the disaster and they do not know which parts really require there attention. This all costs a lot of time, which can be greatly reduced. To get all this information really quick, they sometimes use drones. These are manual controlled. This means that they can only gather information at as many places as they have people available. If we can make the robots independent and automated, while communicating with each other and giving important information to the users, this process would become much faster.
Who are the stakeholders?
There are different stakeholders with different roles in this project involved. They would all take advantage of a solution we provide to their problem. The three stakeholders are Users, Society and Enterprise. We will describe per category why this particular stakeholder is involved into our problem and how our project will contribute to a solution for their problems.
Users
The biggest group of stakeholders are the users, which consists of civilians, government organizations, and private organizations or non-government organizations. These would all take advantage of the solution we provide, in particular those which are our intended end-user, i.e. the groups which will be involved during a natural disaster. We shall describe how these groups use our solution
- Government Organizations
Organizations formed by the government to combat natural disasters will take the most advantage from our solution. When a natural disaster will take place on large scale, emergency services or other organizations want to gather information as quick as possible. With our solution, this will become automated and much quicker.
- Civilians
Civilians struck by natural disasters benefit from our solution. The quicker help comes, the smaller problems arising for civilians will be. This counts for medical care, but also search and rescue and preventing loss of private property.
- Private organizations/non-government organizations
Organizations could also use our solution to work for different purposes. For example as security of property. Next to that, our solution to the described problem could be used as a good solution for similar problems as government organizations are describing.
Society
The society in a whole would benefit greatly from our solution. Our solution is relative cheap, and would be a great addition or replacement to existing solutions. Our solution would contribute to prevent loss of life, loss of property and would help organizations greatly. Next to that, since it is not a expensive solution, it would be much more cost effective than existing solutions such as the manual controlled drone.
Enterprise
The enterprise would also benefit from our solution. Firstly, the usage of drones would be far greater than before. This would mean that enterprises could cash in into our solutions.