PRE2017 4 Groep6: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
* [[Case studies]] | * [[Case studies]] | ||
* [[User and product analysis]] | * [[User and product analysis]] | ||
* [[ | * [[Designing the robot]] | ||
* [[Project conclusion]] | * [[Project conclusion]] | ||
* [[Project reflection]] | * [[Project reflection]] |
Revision as of 07:44, 31 May 2018
Group members
- David van den Beld, 1001770
- Gerben Erens, 0997906
- Luc Kleinman, 1008097
- Maikel Morren, 1002099
- Adine van Wier, 0999813
Project pages
For all the branches of the project diverging from the initial set-up and planning, please see their respective pages
- General Literature Review
- Extended Literature Review
- Case studies
- User and product analysis
- Designing the robot
- Project conclusion
- Project reflection
- Trial formule
This page itself is dedicated to general information about the project.
Project
Project Statement
Wildfires are occurring throughout the world at an increasing rate. Great droughts in various regions across the globe are increasing the possibility of wildfires. National parks deal with major wildfires multiple times over a year. Areas devastated by wildfires are mostly devoid of life, while potentially still having an extremely fertile soil with all the biomass left after the fire. Artificial reforestation can accelerate the natural process which accounts for the regrowth of the forests. This process might be enhanced by means of technology, for example by deploying robots that plant seeds of saplings in these areas. This project investigates the possibility and potential of utilizing robots to restore these devastated areas to their former glory. In order to investigate this possibility, a thorough analysis on different methods of deforestation is made first. By comparing methods of reforestation a lot can be learnt about what aspects the reforestation-robot should be an improvement on compared to older reforestation methods. Also, this analysis will explore if a new method of reforestation is needed at all. Beyond this, two case studies are investigated. These case studies show how reforestation and forest fires are currently being handled. The case help studies help to get a better understanding of what the robot should be able to do and what it ought not to be able to do and thus help to define design criteria. Finally, a design is made of the robot which would accomplish all necessities found during the analysis of the different reforestation methods and which follows all the criteria discovered in the case studies. Multiple preliminary designs regarding different seeding mechanism were made, one of which was chosen based on the criteria emerging from the literature review and case studies, and is resolved in further detail. Lastly some suggestions for future research are given, mainly in the topic of what possibilities exist for the other crucial functionalities of the robot, and how they would merge into one final product capable of doing what should be done. To conclude, this project aims to assess the necessity of a robot to rebuild a forest in a national park after a forest fire. Discover the functionalities such a robot must have and make a potential design based on the gained information.
Planning
Below follows the planning for the project for the upcoming 9 weeks constituting the course 0LAUK0 Project: Robots Everywhere.
Week number | Task | Person assigned |
---|---|---|
1 | ||
Choose definitive subject | Collaborative effort of all members | |
Define problem statement and objectives | David | |
Define users | Adine | |
Obtain user requirements | Gerben | |
Work out typical use cases | Luc | |
Define the milestones and deliverables | Maikel | |
Define the approach of the problem | Collaborative effort of all members | |
Search for relevant state-of-the-art (SotA) sources, categories:
|
All divided into the subcategories:
| |
Make project planning | Collaborative effort of all members | |
2 | ||
Review user requirements and use cases | Collaborative effort of all members | |
Finish collecting SotA articles and write SotA section | Each member for their respective subcategory | |
Research different application sectors for reforestation to narrow problem statement:
|
All divided into categories:
| |
Make preliminary robot designs for the following seeding mechanisms:
|
Divided into:
| |
3 | ||
Review and narrowing of problem statement | Collaborative effort of all members | |
Extended literature review on specific subject of reforestation:
|
All divided into the following categories:
| |
Rewrite problem statement | Luc | |
Review users for narrowed problem | Adine | |
4 | ||
Edit the general literature review on wiki | Maikel | |
Research the costs of reforestation methods:
|
Divided by:
| |
Rewrite segment of need for control and biodiversity into one introductory segement | David | |
Start making 3D skechtes of preliminary designs | Gerben | |
Document wiki on extended literature review page | Adine | |
Start keeping a log of the research and design process | Adine | |
Look for case studies | Maikel & Luc | |
5 | ||
Write case studies | Maikel & Luc | |
Remake planning to fit new goal of the project | Maikel | |
Redefine objectives to fit new goal of project | David | |
Rewrite drilling mechanism section | Gerben | |
Finish a first 3D model | Gerben | |
6 | ||
Continue 3D modelling | Gerben | |
Elaborate and extend upon current preliminary designs (including sketch) | Maikel, Gerben & David | |
Write wiki page for case studies | Luc & Maikel | |
Evaluate designs using criteria from literature study | Adine | |
7 | ||
Make a concept for fully functional robot and report on the wiki | Maikel & Luc | |
Reflect on project | David & Maikel | |
Make a draft for final presentation | David & Adine | |
Reach and write overall project conclusion | Collaborative effort of all members | |
8 | ||
Buffer time | Collaborative effort of all members | |
Finish final presentation | Adine, David & Maikel | |
Complete wiki | Gerben, Luc |
Approach
The problem will be approach by means of a design. What would be the best design for an effective seeding mechanism which can be used in a mobile robot deployed in a reforestation operation? The gross of the project is carried out sequentially as each subject builds further upon the conclusion reached during the last subject, which is represented in the structure of this Wiki consisting of several subpages corresponding to these subjects. Albeit that the project is carried out sequentially, within each sequence several tasks are divided such that they can be carried out in parallel by different group members. During the last phase of the project, when the major milestones have been finished, the project wrap up consists of several small independent task will allow us to abandon the sequential structure which was necessary during the other phases and carry out these tasks in parallel to gain in time.
Milestones and Deliverables
Date | Accomplished |
---|---|
30-04-2018 | SotA research done |
03-05-2018 | Have problem narrowed down |
17-05-2018 | Finish collecting data about reforestation techniques |
24-05-2018 | Have case studies finished |
31-05-2018 | Have preliminary designs including 3D model and pick winner design |
07-06-2018 | Have detailed physical analysis of winner design |
07-06-2018 | Have concept for full robot recommendation finished |
11-06-2018 | Presentation is finished |
14-06-2018 | Wiki is completely updated |