PRE2016 3 Groep10: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 161: Line 161:
<math>|a| = </math>
<math>|a| = </math>


{{math|''f''(''x'') {{=}} ''x''<sup>2</sup>}}


[[File:FallDetectionAlgorithm.png|thumb|none|400 px|Figure XXX: State diagram of fall detection algorithm]]
[[File:FallDetectionAlgorithm.png|thumb|none|400 px|Figure XXX: State diagram of fall detection algorithm]]

Revision as of 18:29, 4 March 2017

Advanced Elderly Emergency System (A.E.E.S.)

This is the wiki page of group 10 of the USE course: Project Robots Everywhere at the Eindhoven University of Technology. Here we will thoroughly describe all aspects of our project, in which we design a wearable fall-detecting device for elderly people.

Design team

We have a diverse team of 6 people from different majors of the TU/e:

Name Student ID Department
Lennard Buijs 0959903 Mechanical Engineering
Bram Grooten 0885158 Applied Mathematics
Ken Hommen 0911594 Industrial Engineering
Pieter van Loon 0861532 Software Science
Steef Reijntjes 0944701 Electrical Engineering
Man-Hing Wong 0944285 Electrical Engineering

Problem statement

Problem

In the Netherlands we have more and more elderly people. For them it can be more difficult to balance themselves when standing or walking, so it regularly happens that they fall. When they do, they often have trouble standing up. Also, they have a higher chance of injuries, with hip fractures being the most common.[1] The problem especially arises if these elderly are severely injured by a fall, and therefore can't get up to reach for help.

Solution

A device that should be worn by, mostly, elderly that detects when one has fallen. It can automatically send a warning to ‘ICE’-persons or even call 112. Automatically sending its location along with it. A microphone and camera can in this case be used to observe the situation even faster. By connecting the device to the internet, this all can be made possible even faster. Also the device can ‘ask’ questions to the owner in case of emergency, which can be answered by simply talking back.

Objectives

To effectively and successfully end this project, a list of objectives is created to ensure weekly improvements, which will help in obtaining a final product. List of objectives:

  • Research state-of-the-art technology
  • Establish list of requirements
  • Design the system that follows every requirement, this would be our ideal deliverable
  • Create a final presentation, explaining our design

USE Aspects

The user of the Advanced Elderly Emergency System are the elderly. Since the number of elderly is increasing, more elderly people will need a way of calling for help when an emergency occurs. Nowadays an elder may have an arm wrist or necklace which has a button to call for help. However, in the future, there will be too many elderly for the number of nurses or doctors. By asking questions, the doctor's job will be easier, which means it will also help the enterprise.


Research

State of the art

Medical Alert Systems

Currently there a few different wearable emergency devices for elderly. All of them have slightly different functions. Firstly, there is the Medical Guardian.[2] The Medical Guardian is considered the best medical alert system available.[3] The Medical Guardian (Premium) is a medical alert system that can be worn as an arm wrist, belt or necklace and has the following features:

  • Fall detection that will call for help when the patient has fallen
  • A button that will call for help and contacts you with an employee of Medical Guardian
  • GPS-tracking
  • Heat-sensor in case of fire


Fall detection

The fall detection is most important to this research, since it is one of the main features of the Advanced Elderly Emergency System. Currently, most fall detection systems utilise accelerometers and gyroscopes.[4] With these sensors the movement of the patient can be measured. A sudden change of direction can then be also be measured and calculated. This is further explained in chapter " ".

Most sensors have a certain waiting time before calling for help, because it checks for movement after a possible fall. If the patient moves, the system will not call for help. When an AI is added to the system, this waiting time can be reduced a lot, because the AI can ask the patient whether he or she has fallen.


Speech recognition

Speech recognition is another important feature of the Advanced Elderly Emergency System. There are many applications for speech recognition. A very wellknown software is Siri. Siri is able to recognise one's voice and hear what the person is asking.

Approach

The A.E.E.S improves on the state of the art technology by implementing an AI into the system which helps the user in case of an emergency where the user is unable to manually activate the needed functions on the device. This AI determines whether or not certain actions need to be taken depending on the current situation/enivornment. These actions include, but are not limited to:

  • Calling emergency services
  • Contacting family members/friends
  • Asking the user what his/her state is

Requirements

These are components that our design will most likely need:

  • Wearable, for example one of the following:
    • Belt clip
    • Wrist band
    • Necklace
  • Microphone, for speech recognition
  • Speakers, so it can speak to the user
  • GPS to track location
  • Internet and phone connections
    • Call emergency services
    • Contact next of kin
    • Share location with next of kin
  • Sensors to detect falling:
    • accelerometer
    • barometer
    • gyroscope
  • Air quality measuring sensor
  • Button to manually trigger emergency state

Design options

We plan to design a device to attach to one's belt which will detect the fall. Then this belt clip could:

  • have it's own microphone and speaker to communicate with the user.
  • or the belt clip could be connected to a smartwatch app. This smartwatch will then need to have a microphone and a speaker. Many smartwatches exist which don't have a speaker, thus we would need to look for a specific watch that does have one.
  • or it could connect with a smartphone app. This is simpler in design for us, and most smartphones both have a microphone and speakers. However, many elderly won't have their smartphone with them at all times, if they even have a smartphone.
  • or we could make our own wrist band with a built-in microphone and speaker to communicate with the user.

It seems like we should definitely make the belt clip, and see what we can add because of our limited time. But, the functionality of this belt device alone already exist, as we have seen in our research. To really add something to the state-of-the-art, we need to combine it with some form of AI. Thus another option is starting with the AI functionality.

AI functionality

The AI in the device is activated when the device registers a falling motion, or when the user presses the action button. This AI will then immediately contact emergency services to inform them that an elderly person fell. The emergency services then know the place/situation of the elderly person, and they will act accordingly by for example sending out an ambulance. After this, the AI will ask the person if they are okay, and eventually if the AI should contact family/friends. If the AI does not receive feedback from the user, the AI will send a message to family or friends that something is wrong with the user.

Implementation of fall detection sensor

Design by Falin Wu et al.

The fall detection sensor in the A.A.E.S. will be fully based on the fall detection sensor proposed in "Development of a Wearable-Sensor-Based Fall Detection System" by F. Wu et al. [source] The advantages of using this sensor are:

  • Can be worn on the waist, but does not have to be fixed in position
  • Only uses a single triaxial accelerometer for fall detection
  • Is power efficient, making the elderly able to travel without constantly having to recharge it.


This design is an acceleration threshold based design, which will be further explained in Chapter 6.4.2 "Fall Detection Algorithm". The reliability of this sensor is fairly high. In Table XXX the test results of the system test are shown. As you can see, the sensor detects a fall 220 out of 240 times, resulting in an average sensitivity of 91,7%. However, also notable is the number of false alarms when a person is jumping, walking or resting. Most elderly people that need a medical alert system will not regularly be jumping, but to limit the number of false alarms it is necessary to experiment with the number of athreshold.

Table XXX: Test results of the design with different motion types

Fall Detection Algorithm

The fall detection algorithm consists of five states. The state diagram is the same as the original design by F. Wu et al., with the exception of state 5. The state diagram can be found in figure XXX.

State 1: Initial state

The acceleration a of the elder will be measured by the triaxial accelerometer. This acceleration will consist of ax, ay and az. The total acceleration can be calculated with the formula:

[math]\displaystyle{ |a| = }[/math]

Template loop detected: Template:Math

Figure XXX: State diagram of fall detection algorithm

Hardware (Steef?)

Possible Expansions

Detecting tone of voice

By analysing the tone of the users voice it should be possible to make some assumptions about the severity of the situation

Learning users patterns

The system could learn from when an user often triggers the system without there being an emergency. It can for instance update it's thresholds or also take time of day and or the users patterns into consideration.

Literature

Other pages with important information on this subject:

URLs

Medical guardian emergency system
https://www.medicalguardian.com/product/premium-guardian
The Best Medical Alert Systems of 2017
http://www.toptenreviews.com/health/senior-care/best-medical-alert-systems/
Speech recognition library
http://arjo129.github.io/uSpeech/

Appendices

This section gives an overview of the progression and planning of our design project. This mainly concerns organizational as well as technical tasks, decisions and ideas that have been performed within our project environment to maintain a successfull and appropriate end result. Explanations on how certain decisions has been made by our design team can be found in the following, relevant sections:

References