PRE2016 3 Groep10: Difference between revisions
Line 119: | Line 119: | ||
* Button to manually trigger emergency state | * Button to manually trigger emergency state | ||
== Design | == Design options == | ||
We plan to design a device to attach to one's belt which will detect the fall. Then this belt clip could: | We plan to design a device to attach to one's belt which will detect the fall. Then this belt clip could: | ||
Line 126: | Line 126: | ||
* or it could connect with a smartphone app. This is simpler in design for us, and most smartphones both have a microphone and speakers. However, many elderly won't have their smartphone with them at all times, if they even have a smartphone. | * or it could connect with a smartphone app. This is simpler in design for us, and most smartphones both have a microphone and speakers. However, many elderly won't have their smartphone with them at all times, if they even have a smartphone. | ||
* or we could make our own wrist band with a built-in microphone and speaker to communicate with the user. | * or we could make our own wrist band with a built-in microphone and speaker to communicate with the user. | ||
It seems like we should definitely make the belt clip, and see what we can add because of our limited time. But, the functionality of this belt device alone already exist, as we have seen in our research. To really add something to the state-of-the-art, we need to combine it with some form of AI. Thus another option is starting with the AI functionality. | |||
= Possible Expansions = | = Possible Expansions = |
Revision as of 15:56, 23 February 2017
Advanced Elderly Emergency System (A.E.E.S.)
This is the wiki page of group 10 of the USE course: Project Robots Everywhere at the Eindhoven University of Technology. Here we will thoroughly describe all aspects of our project, in which we design a wearable fall-detecting device for elderly people.
Design team
We have a diverse team of 6 people from different majors of the TU/e:
Name | Student ID | Department |
Lennard Buijs | 0959903 | Mechanical Engineering |
Bram Grooten | 0885158 | Applied Mathematics |
Ken Hommen | 0911594 | Industrial Engineering |
Pieter van Loon | 0861532 | Software Science |
Steef Reijntjes | 0944701 | Electrical Engineering |
Man-Hing Wong | 0944285 | Electrical Engineering |
Problem statement
Problem
In the Netherlands we have more and more elderly people. For them it can be more difficult to balance themselves when standing or walking, so it regularly happens that they fall. When they do, they often have trouble standing up. Also, they have a higher chance of injuries, with hip fractures being the most common.[1] The problem especially arises if these elderly are severely injured by a fall, and therefore can't get up to reach for help.
Solution
A device that should be worn by, mostly, elderly that detects when one has fallen. It can automatically send a warning to ‘ICE’-persons or even call 112. Automatically sending its location along with it. A microphone and camera can in this case be used to observe the situation even faster. By connecting the device to the internet, this all can be made possible even faster. Also the device can ‘ask’ questions to the owner in case of emergency, which can be answered by simply talking back.
Objectives
To effectively and successfully end this project, a list of objectives is created to ensure weekly improvements, which will help in obtaining a final product. List of objectives:
- Research state-of-the-art technology
- Establish list of requirements
- Design the system that follows every requirement, this would be our ideal deliverable
- Create a final presentation, explaining our design
USE Aspects
The user of the Advanced Elderly Emergency System are the elderly. Since the number of elderly is increasing, more elderly people will need a way of calling for help when an emergency occurs. Nowadays an elder may have an arm wrist or necklace which has a button to call for help. However, in the future, there will be too many elderly for the number of nurses or doctors. By asking questions, the doctor's job will be easier, which means it will also help the enterprise.
Research
State of the art
Medical Alert Systems
Currently there a few different wearable emergency devices for elderly. All of them have slightly different functions. Firstly, there is the Medical Guardian.[2] The Medical Guardian is considered the best medical alert system available.[3] The Medical Guardian (Premium) is a medical alert system that can be worn as an arm wrist, belt or necklace and has the following features:
- Fall detection that will call for help when the patient has fallen
- A button that will call for help and contacts you with an employee of Medical Guardian
- GPS-tracking
- Heat-sensor in case of fire
Fall detection
The fall detection is most important to this research, since it is one of the main features of the Advanced Elderly Emergency System. Currently, most fall detection systems utilise accelerometers and gyroscopes.[4] With these sensors the movement of the patient can be measured. A sudden change of direction can then be also be measured and calculated. This is further explained in chapter " ".
Most sensors have a certain waiting time before calling for help, because it checks for movement after a possible fall. If the patient moves, the system will not call for help. When an AI is added to the system, this waiting time can be reduced a lot, because the AI can ask the patient whether he or she has fallen.
Speech recognition
Speech recognition is another important feature of the Advanced Elderly Emergency System. There are many applications for speech recognition. A very wellknown software is Siri. Siri is able to recognise one's voice and hear what the person is asking.
Approach
The A.E.E.S improves on the state of the art technology by implementing an AI into the system which helps the user in case of an emergency where the user is unable to manually activate the needed functions on the device. This AI determines whether or not certain actions need to be taken depending on the current situation/enivornment. These actions include, but are not limited to:
- Calling emergency services
- Contacting family members/friends
- Asking the user what his/her state is
Requirements
These are components that our design will most likely need:
- Wearable, for example one of the following:
- Belt clip
- Wrist band
- Necklace
- Microphone, for speech recognition
- Speakers, so it can speak to the user
- GPS to track location
- Internet and phone connections
- Call emergency services
- Contact next of kin
- Share location with next of kin
- Sensors to detect falling:
- accelerometer
- barometer
- gyroscope
- Air quality measuring sensor
- Button to manually trigger emergency state
Design options
We plan to design a device to attach to one's belt which will detect the fall. Then this belt clip could:
- have it's own microphone and speaker to communicate with the user.
- or the belt clip could be connected to a smartwatch app. This smartwatch will then need to have a microphone and a speaker. Many smartwatches exist which don't have a speaker, thus we would need to look for a specific watch that does have one.
- or it could connect with a smartphone app. This is simpler in design for us, and most smartphones both have a microphone and speakers. However, many elderly won't have their smartphone with them at all times, if they even have a smartphone.
- or we could make our own wrist band with a built-in microphone and speaker to communicate with the user.
It seems like we should definitely make the belt clip, and see what we can add because of our limited time. But, the functionality of this belt device alone already exist, as we have seen in our research. To really add something to the state-of-the-art, we need to combine it with some form of AI. Thus another option is starting with the AI functionality.
Possible Expansions
Detecting tone of voice
By analysing the tone of the users voice it should be possible to make some assumptions about the severity of the situation
Learning users patterns
The system could learn from when an user often triggers the system without there being an emergency. It can for instance update it's thresholds or also take time of day and or the users patterns into consideration.
Literature
Other pages with important information on this subject:
URLs
- Medical guardian emergency system
- https://www.medicalguardian.com/product/premium-guardian
- The Best Medical Alert Systems of 2017
- http://www.toptenreviews.com/health/senior-care/best-medical-alert-systems/
- Speech recognition library
- http://arjo129.github.io/uSpeech/
Appendices
This section gives an overview of the progression and planning of our design project. This mainly concerns organizational as well as technical tasks, decisions and ideas that have been performed within our project environment to maintain a successfull and appropriate end result. Explanations on how certain decisions has been made by our design team can be found in the following, relevant sections:
- Appendix A - Project progress (log)
- Appendix B - Planning
References
- ↑ 10 Topics in reducing harm from falls http://www.hqsc.govt.nz/assets/Falls/10-Topics/topic1-falls-in-older-people-15-April-2014.pdf
- ↑ Medical Guardian website https://www.medicalguardian.com/product/premium-guardian
- ↑ LiveScience's top 3 medical alert systems http://www.livescience.com/43016-best-medical-alert-systems.html
- ↑ Toptenreviews explaining fall detection sensors http://www.toptenreviews.com/health/senior-care/best-fall-detection-sensors/