Mobile Robot Control 2024 Ultron:Solution 2: Difference between revisions
No edit summary Tag: 2017 source edit |
|||
Line 28: | Line 28: | ||
V_r = V_s \cap V_a \cap V_d | V_r = V_s \cap V_a \cap V_d | ||
</math> | </math> | ||
for k = 1:len(ω_range) | for k = 1:len(ω_range) | ||
for i = 0:N | for i = 0:N | ||
Line 37: | Line 35: | ||
end | end | ||
end | end | ||
Then the objective function is introduced to score the trajectories and select the optimal trajectory. | Then the objective function is introduced to score the trajectories and select the optimal trajectory. | ||
<math> | <math> |
Revision as of 20:19, 15 May 2024
Methodology
1. Artificial Potential Field
2. Dynamic Window Approach
The Dynamic Window Approach (DWA) algorithm simulates motion trajectories in velocity space [math]\displaystyle{ (v, \omega) }[/math] for a certain period of time. It evaluates these trajectories using an evaluation function and selects the optimal trajectory corresponding to [math]\displaystyle{ (v, \omega) }[/math] to drive the robot's motion.
Consider velocities which have to be
- Possible: velocities are limited by robot’s dynamics
[math]\displaystyle{ V_s = \{(v, \omega) \mid v \in [v_{\min}, v_{\max}] \land \omega \in [\omega_{\min}, \omega_{\max}]\} }[/math]
- Admissible: robot can stop before reaching the closest obstacle
[math]\displaystyle{ V_a = \{(v, \omega) \mid v \leq \sqrt{2 d(v, \omega) \dot{v_b}} \land \omega \leq \sqrt{2 d(v, \omega) \dot{\omega_b}}\} }[/math]
- Reachable: velocity and acceleration constraints (dynamic window)
[math]\displaystyle{ V_d = \{(v, \omega) \mid v \in [v_a - \dot{v} t, v_a + \dot{v} t] \land \omega \in [\omega_a - \dot{\omega} t, \omega_a + \dot{\omega} t]\} }[/math]
Intersection of possible, admissible and reachable velocities provides the search space: [math]\displaystyle{ V_r = V_s \cap V_a \cap V_d }[/math]
for k = 1:len(ω_range) for i = 0:N x(i + 1) = x(i) + Δt * v_range(j) * cos(θ(i)) y(i + 1) = y(i) + Δt * v_range(j) * sin(θ(i)) θ(i + 1) = θ(i) + Δt * ω_range(k) end end
Then the objective function is introduced to score the trajectories and select the optimal trajectory. [math]\displaystyle{ G(v, \omega) = \sigma ( k_h h(v, \omega) + k_d d(v, \omega) + k_s s(v, \omega) ) }[/math]
- [math]\displaystyle{ h(v, \omega) }[/math]: target heading towards goal
- [math]\displaystyle{ d(v, \omega) }[/math]: distance to closest obstacle on trajectory
- [math]\displaystyle{ s(v, \omega) }[/math]: forward velocity