Mobile Robot Control 2024 Ultron:Solution 2: Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
===Methodology=== | ===Methodology=== | ||
===1. Artificial Potential Field=== | ====1. Artificial Potential Field==== | ||
Line 22: | Line 22: | ||
<math> | <math> | ||
V_d = \{(v, \omega) \mid v \in [v_a - \dot{v} t, v_a + \dot{v} t] \land \omega \in [\omega_a - \dot{\omega} t, \omega_a + \dot{\omega} t]\} | V_d = \{(v, \omega) \mid v \in [v_a - \dot{v} t, v_a + \dot{v} t] \land \omega \in [\omega_a - \dot{\omega} t, \omega_a + \dot{\omega} t]\} | ||
</math> | |||
Intersection of \( V_s \), \( V_a \), and \( V_d \) provides the search space \( V_r \): | |||
<math> | |||
V_r = V_s \cap V_a \cap V_d | |||
</math> | </math> | ||
===Testing Results=== | ===Testing Results=== |
Revision as of 20:10, 15 May 2024
Methodology
1. Artificial Potential Field
2. Dynamic Window Approach
The Dynamic Window Approach (DWA) algorithm simulates motion trajectories in velocity space [math]\displaystyle{ (v, \omega) }[/math] for a certain period of time. It evaluates these trajectories using an evaluation function and selects the optimal trajectory corresponding to [math]\displaystyle{ (v, \omega) }[/math] to drive the robot's motion.
Consider velocities which have to be
- Possible: velocities are limited by robot’s dynamics
[math]\displaystyle{ V_s = \{(v, \omega) \mid v \in [v_{\min}, v_{\max}] \land \omega \in [\omega_{\min}, \omega_{\max}]\} }[/math]
- Admissible: robot can stop before reaching the closest obstacle
[math]\displaystyle{ V_a = \{(v, \omega) \mid v \leq \sqrt{2 d(v, \omega) \dot{v_b}} \land \omega \leq \sqrt{2 d(v, \omega) \dot{\omega_b}}\} }[/math]
- Reachable: velocity and acceleration constraints (dynamic window)
[math]\displaystyle{ V_d = \{(v, \omega) \mid v \in [v_a - \dot{v} t, v_a + \dot{v} t] \land \omega \in [\omega_a - \dot{\omega} t, \omega_a + \dot{\omega} t]\} }[/math]
Intersection of \( V_s \), \( V_a \), and \( V_d \) provides the search space \( V_r \):
[math]\displaystyle{ V_r = V_s \cap V_a \cap V_d }[/math]