PRE2020 4 Group6: Difference between revisions
TUe\20192010 (talk | contribs) (→Goals) |
TUe\20192010 (talk | contribs) |
||
Line 339: | Line 339: | ||
'''Our third goal''' is to remove some workload from the caretakers. We know that it is not always easy to work in the (health)care sector and especially with the covid-19 situation the pressure on these people is high. If our product manages to independently keep the people with DS occupied, it will mean more free time for the caretakers to spend on others work or just relax a bit so this goal ties in with the second goal. | '''Our third goal''' is to remove some workload from the caretakers. We know that it is not always easy to work in the (health)care sector and especially with the covid-19 situation the pressure on these people is high. If our product manages to independently keep the people with DS occupied, it will mean more free time for the caretakers to spend on others work or just relax a bit so this goal ties in with the second goal. | ||
This can be tested by comparing the time a caretaker spends on helping these people take care of normal plants VS the time spent installing and explaining our product. If our product proves to be too complicated to use, we can get feedback from the caretakers that it took too much time and energy to adapt to the new system and that it was not as independent as we had hoped. | This can be tested by comparing the time a caretaker spends on helping these people take care of normal plants VS the time spent installing and explaining our product. If our product proves to be too complicated to use, we can get feedback from the caretakers that it took too much time and energy to adapt to the new system and that it was not as independent as we had hoped. | ||
Line 347: | Line 346: | ||
This can be tested by starting off with two plants of the same type and health. One will be the control plant and the other will be planted in our pot. Both will be placed in the care home. After the testing period, the health of both plants will be assed. We do realise that assessing plant health is a bit subjective and that the sample size is really low, but we have to make do with what we can do in the restricted time and budget. | This can be tested by starting off with two plants of the same type and health. One will be the control plant and the other will be planted in our pot. Both will be placed in the care home. After the testing period, the health of both plants will be assed. We do realise that assessing plant health is a bit subjective and that the sample size is really low, but we have to make do with what we can do in the restricted time and budget. | ||
It is also interesting to note that a smart pot that improves plant health is also an interesting product for the agricultural sector and greenhouse industry, seeing how dutch farmers need to produce with high efficiency to compete in the market because of the high prices for ground. | It is also interesting to note that a smart pot that improves plant health is also an interesting product for the agricultural sector and greenhouse industry, seeing how dutch farmers need to produce with high efficiency to compete in the market because of the high prices for ground. | ||
=Experiment= | |||
To test whether our smart pot achieves the stated goal we will perform two simultaneous tests that are one week long. For each test we will need two similar plants that are in similar health. | |||
The plant that we have chosen for this experiment is a tulip with bulb. This was done because 1) they are available in this spring period. 2) They are flowers so we expect them to show relatively large changes over the short testing period of one week. 3) Because they are flowers we hope that the caretakers and the clients like them. 4) The blub prolongs the life of the tulips compared to cut flowers. This way we want to prevent the tulips from dying naturally within a week. 5) Because of the bulb we can plant the tulips in into the dirt. Otherwise it would have been a smart vase, which makes the needs for a moisture sensor obsolete. 6) bulb-in-pots need a bit of water once or twice a week. So the clients actually need to water the plants within that week. 7) Tulips require sunlight but not to extreme. This is a bit more interesting in terms of programming our software and using the sensors. | |||
In the experiment one plant will be placed in a regular pot and will serves as a control. The other plant will be placed in our smart pot. Both plants will then be placed in similar environments (with the same temperature and amount of light) but in different locations (as to not trigger care for the control plant by association with the smart plant). Then the caretakers will introduce the people with DS to the plants and the smart pot and tell them that they have to care for these plants during that week. The caretakers also mention that one plant is a magical talking plant and that it can communicate if it needs something, so that the clients will not be scared or too confused. | |||
We know that one week is a very short timespan and that a sample size of N=2 is small but we have to work with what we have. After the test period we will assess the health of both plants to see if one is in better health then the other, suggesting the smart plant influenced the wellbeing of the plant. | |||
Due to the situation with Covid-19 we are not allowed to enter the care-houses in person. And due to the mental vulnerability of the clients, their privacy, and the fact that we are strangers to them, we are not allowed to set up a webcam feed to more scientifically measure some parameters like: time spent with the plant. | |||
Therefore we will gather results by questioning the caretakers (and the clients indirectly). | |||
The results from the two parallel tests will eb combined, paying attention to any possibly interesting similarities and differences. From these combined results we will be able to judges whether our product achieved the goals we set for it, and what still needs improvement. | |||
=Deliverables= | =Deliverables= |
Revision as of 14:00, 6 May 2021
Members | Student ID | Faculty | |
---|---|---|---|
Marijn Borghouts | 1449532 | BMT | m.m.borghouts@student.tue.nl |
Bert de Groot | 1459597 | ME | g.d.groot@student.tue.nl |
Nando di Antonio | 1465325 | ME | n.z.d.antonio@student.tue.nl |
Dorien Duyndam | 1305107 | EE | d.a.duyndam@student.tue.nl |
Subject
Idea
The idea is to create a smart plant system that would notify the user if it needs either water or more or less sunlight. The target group is a social work space (zorgboerderij) for mentally disabled people. They can see or hear which plant needs attention and get that plant what it needs. The social workers will therefore do something useful which is very great for such people. The people monitoring this social work space will also get a great work relief because of this system because they don’t have to tell these people what to do with the plants anymore. The plant pot will probably get a nice face so that it looks like a friendly robot and it will get water sensors implemented in the soil and light sensors around the plant to monitor the amount of light the plant gets. The pot will also be able to notify when it is being moved or given water and will start saying nice things to the person moving it or giving it water.
USErs
User
The main target group for this product is people with a mental disability. The product is designed to help the users overcome some of the challenges that they face due to their disability. "Mental disability" is a very broad term and can out itself on a whole spectrum of problems, ranging from difficulty with speaking to recognising emotions. For the sake of making a more tailored product, we have decided to focus on people with Down syndrome. This decision allows us to gather more specific needs and requirements from the users (which can be found in its own section).
Our robot will notify the user by speech when a plant needs more or less water, or more or less sunlight. This way the product helps the user take care of a plant without having to do complex tasks like remembering when and how often a plant needs water or sunlight. Our robot gives simple, chopped up clear instructions so that the user knows what is being expected from him/her. After a task is completed, the robots will give confirmation in the form of positive feedback to the user. This helps assure the user that a task has been successfully completed. This way our product makes caring for plants more accessible for people with Down syndrome. which has all types of benefits (see Sources XXXX)
The secondary users are the caretakers. The product is meant to be used by people with Down syndrome but is meant to be bought and installed by the caretakers. This device helps relieve workload from the caretakers by automating a part of the managing and task distribution process in a social work environment. Therefore it is important to always be mindful of who the users of specific functions is and what their needs and capabilities are.
Society
Some say that a society is measured by how it treats its weakest members (famous misquote NOT by Ghandi {Does this need an extra source?}). We realise that our product will not solve any world crisis or drastically improve the farming capacity of social workspaces, but it helps people who need a little bit more care. Our robot allows people with Down syndrome to more easily perform work, giving them a way to spend their day and make themselves (somewhat) useful. This benefits society by allowing better participation across all layers of society and show empathy and care toward those who need it the most.
Secondly, this helps relieve some of the workload of social caregivers who are often overworked. Financing for this sector generally low {does this need a source?} and our product might save some valuable time by automating some simple repetitive tasks.
Enterprise
This product of course has to be developed and manufactured. This creates jobs and potential revenue which is all good for the economy. Products of these types do already exist (see sources XXXX) but there are mainly focused on increasing greenhouse yield. This product has a different goal and is therefore unique enough to not have to deal with fierce competition in the market, giving it a fair shot at succeeding in our opinion.
Plan
Week 1
- Come up with an idea (all)
- Make the planning (Bert, Nando)
- Find relative papers (all)
- Decide who the USErs will be (all)
- Research about why it is good for the users (all)
Name | Total hours | Tasks |
---|---|---|
Marijn | 10 | Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2) |
Bert | 10 | Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2) |
Nando | 10 | Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2) |
Dorien | 10 | Group formation(0.5), watched lectures(0.5), done research about the subject(3), searched for sources about the subject(4), edited the cstwiki(2) |
Week 2
- List the needs this user requires (Marijn, Dorien)
- Research about possible components (Nando, Bert)
- RPC list (Dorien, Marijn)
- Design an electrical circuit (Bert)
Name | Total hours | Tasks |
---|---|---|
Marijn | 10 | Group meeting (2x2u), Improving the users/society/enterprise section (1u), Literature study into the needs of people with DS (2u), improving our schedule and gathering action points for this week(1u), redefining our goals and thinking about a way to test those (2u) |
Bert | 10 | meetings (5.5u), research about components (2u), designing possible electrical circuit (0.5u), thinking about questions we want to ask (2u) |
Nando | 13 | Group meeting (1x1u and 1x3.5u), Improving the approach section(0.5u), literary study into simular systems that already exist(4u), meeting with a caretaker and processing the results(4u) |
Dorien | 9.5 | Group meetings (1+3.5h), literary study into the approach of people with DS (2h), prepare questions to healthcare institutions (2h), prepare mails and calls to healthcare institutions (1h) |
Week 3
- Make a start on the design of the pot (Dorien, Nando)
- Start working on the code (Marijn, Nando)
- Start with the CAD design of the pot (Bert)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 4
- Continue working on the code (Marijn, Bert, Dorien)
- Start testing the electrical components (Dorien, Bert)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 5
- Adjust the code according to the test results (Bert, Nando)
- Test again (Marijn, Dorien)
- Build a prototype (all)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 6
- Upgrade the code again (Marijn, Bert)
- Adjust things to the prototype according to the test results (Nando, Dorien)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 7
- Work on the cstwiki (all)
- Work on the design and start on the product (all)
- Start working on the final presentation (all)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 8
- Work on the cstwiki (all)
- Work on the design and start on the product (all)
- Start working on the final presentation (all)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Week 9
- Work on the cstwiki (all)
- Work on the design and start on the product (all)
- Start working on the final presentation (all)
Name | Total hours | Tasks |
---|---|---|
Marijn | hours | tasks |
Bert | hours | tasks |
Nando | hours | tasks |
Dorien | Hours | tasks |
Approach
The approach will be as follows. Firstly, a literature study will be held in order to increase the knowledge about the subject and to find arguments in support of or against the project. Then contact will be sought with caretakers, since they have direct experience in working with people with mental disabilities. these caretakers will be asked several questions, some questions are inline with our vieuws so we can get their feedback and other questions allow them to freely give their own views and opinions. Secondly, many solutions will be thought of and the best solutions will be used to further develop a prototype, this should resemble the final product quite closely. The prototype will consist of mechanical parts with the implementation of software. This in turn will give the possibility to test the prototype and use it in its predefined enviroment. Lastly, the prototype will be adjusted to better resemble a final product in looks and performance.
Goals
To make a successful project that can be shown to be successful, we need to define clear measurable goals and a way to test them.
Our main goal is to add something to the daily lives of people with DS. We want to give them a way to spend their time, and give them something to care for. Interacting and caring for the plant should be a hobby, something that they enjoy doing and spending time on. This is a beautiful idealistic goal that improves the wellbeing of these people and can therefore be marketed as a healthcare product that could even be covered by healthcare insurance.
This can be measured by keeping track of how much time is spent interacting with our pot compared to a control plant that does not have our systems attached to it. Secondly, we can question the users about their overall experience with our product. We do this by asking the users to rate individual aspects of this product on a 5 point scale as an improvement over normal plants? This way we get a quantitative measure of what our system adds to the weekly routine (time and enjoyment wise).
Our second goal is to improve the independence of the users with DS and teach them how to care for something. Our product provides routine and clear simple instruction. This will help the people with DS to take care of the plants themselves without any external help from caretakers. This improves their independence which is a trait that is heavily valued by the caretakers we interviewed. When these people become more independent they require less care and gain more freedom, which improves their quality of life. Secondly, this product will develop the skill to care for something. This is a useful skill for people who need care. If you teach these people basic caring skills they can help themselves and each other better.
Testing the increase in independence and caring skills from 1 week of usages will be difficult since changes are expected to be small and these characteristics are not so simple to measure. Hence this will probably be assessed by the caretakers who will be present during the testing stage.
Our third goal is to remove some workload from the caretakers. We know that it is not always easy to work in the (health)care sector and especially with the covid-19 situation the pressure on these people is high. If our product manages to independently keep the people with DS occupied, it will mean more free time for the caretakers to spend on others work or just relax a bit so this goal ties in with the second goal.
This can be tested by comparing the time a caretaker spends on helping these people take care of normal plants VS the time spent installing and explaining our product. If our product proves to be too complicated to use, we can get feedback from the caretakers that it took too much time and energy to adapt to the new system and that it was not as independent as we had hoped.
Our fourth and least important goal is to improve the health of the plants. Having healthy plants benefit the air quality and the overall look of a space. Secondly it is nice if the care institution has to less regularly buy new plants, this saves time and money (which are already scarce resources).
This can be tested by starting off with two plants of the same type and health. One will be the control plant and the other will be planted in our pot. Both will be placed in the care home. After the testing period, the health of both plants will be assed. We do realise that assessing plant health is a bit subjective and that the sample size is really low, but we have to make do with what we can do in the restricted time and budget. It is also interesting to note that a smart pot that improves plant health is also an interesting product for the agricultural sector and greenhouse industry, seeing how dutch farmers need to produce with high efficiency to compete in the market because of the high prices for ground.
Experiment
To test whether our smart pot achieves the stated goal we will perform two simultaneous tests that are one week long. For each test we will need two similar plants that are in similar health. The plant that we have chosen for this experiment is a tulip with bulb. This was done because 1) they are available in this spring period. 2) They are flowers so we expect them to show relatively large changes over the short testing period of one week. 3) Because they are flowers we hope that the caretakers and the clients like them. 4) The blub prolongs the life of the tulips compared to cut flowers. This way we want to prevent the tulips from dying naturally within a week. 5) Because of the bulb we can plant the tulips in into the dirt. Otherwise it would have been a smart vase, which makes the needs for a moisture sensor obsolete. 6) bulb-in-pots need a bit of water once or twice a week. So the clients actually need to water the plants within that week. 7) Tulips require sunlight but not to extreme. This is a bit more interesting in terms of programming our software and using the sensors.
In the experiment one plant will be placed in a regular pot and will serves as a control. The other plant will be placed in our smart pot. Both plants will then be placed in similar environments (with the same temperature and amount of light) but in different locations (as to not trigger care for the control plant by association with the smart plant). Then the caretakers will introduce the people with DS to the plants and the smart pot and tell them that they have to care for these plants during that week. The caretakers also mention that one plant is a magical talking plant and that it can communicate if it needs something, so that the clients will not be scared or too confused.
We know that one week is a very short timespan and that a sample size of N=2 is small but we have to work with what we have. After the test period we will assess the health of both plants to see if one is in better health then the other, suggesting the smart plant influenced the wellbeing of the plant. Due to the situation with Covid-19 we are not allowed to enter the care-houses in person. And due to the mental vulnerability of the clients, their privacy, and the fact that we are strangers to them, we are not allowed to set up a webcam feed to more scientifically measure some parameters like: time spent with the plant. Therefore we will gather results by questioning the caretakers (and the clients indirectly). The results from the two parallel tests will eb combined, paying attention to any possibly interesting similarities and differences. From these combined results we will be able to judges whether our product achieved the goals we set for it, and what still needs improvement.
Deliverables
- The first deliverable will be this wiki page. It logs our progression and helps the tutors and other people with an interest in our project to follow the progression of the project.
- The second deliverable will be our physical prototype of the greenhouse climate management system.
- The third deliverable is the final presentation, in which we present our project for our teachers and peers.
Milestones
- 1: Literature study
- 2: Make an RPC list
- 3: Make a BOM list
- 4: Ordering of the parts
- 5: Software development
- 6: Making the prototype
- 7: Make the final design
- 8: Finalise the wiki page
Objectives
Cost efficient/Affordable
The prototype should make optimal use of the available resources. Furthermore the components and assembly process should be as cheap as possible to reduce the total production cost, making the design cheaper for users (or obtaining a bigger profit margin for the vendor)
Easy to use
The prototype should be easy to install and operate. This is especially important considering the target audience of mentally handicap people. This product is designed to help these people with doing more complex tasks. If the operation of the product is not extreme straight forward it will only work counter effectively.
Friendly/Positive reinforcement
We want the product to interact nicely with the user. The product should communicate with the user in a friendly manner and compliment the users when they perform an action. This makes the product more pleasant to use and the explicit positive reinforcement confirm to the mentally disabled people that they are in fact doing a good job.
BoM
Component | Costs | Amount | Total costs | Link to webshop |
---|---|---|---|---|
Earth Unit | € 4,- | 2 | € 8,- | https://www.tinytronics.nl/shop/nl/platforms/m5stack/unit/m5stack-earth-unit |
Hub Unit | € 3,50 | 2 | € 7,- | https://www.tinytronics.nl/shop/nl/platforms/m5stack/unit/m5stack-1-3-hub-unit |
Light Unit | € 4,- | 2 | € 8,- | https://www.tinytronics.nl/shop/nl/platforms/m5stack/unit/m5stack-light-unit |
M5STACK M5Core Gray - ESP32 Development Kit | € 30,- | 2 | € 60,- | https://www.tinytronics.nl/shop/nl/platforms/m5stack/m5core/m5stack-m5core-gray-esp32-development-kit |
DuPont Jumper wires Male-Female | € 0,75 | 4 | € 3,- | https://www.tinytronics.nl/shop/nl/kabels/prototype-draden/dupont-jumper-draad-male-female-20cm-10-draden |
M5Stack NeoPixel LED strip | € 10,49 | 2 | € 20,98 | https://www.conrad.nl/p/makerfactory-m5stack-neopixel-strip-mf-6324774-led-lamp-met-connectoren-malefemale-35-v-23-cm-na-tape-cut-2108258 |
M5Stack Bus Module | € 6,- | 2 | € 12,- | https://www.tinytronics.nl/shop/nl/platforms/m5stack/m5core/module/m5stack-bus-module-voor-m5core |
State of the art
Section one: sources on existing smart greenhouse control systems
[1] Abbassy, M. M., & Ead, W. M. (2020). Intelligent Greenhouse Management System. 2020 6th International Conference on Advanced Computing and Communication Systems, ICACCS 2020. https://doi.org/10.1109/ICACCS48705.2020.9074345
This paper mentions an robotic intelligent greenhouse management system. Which reads out the water level, humidity, and measures the moisture content of the soil based on real-time area data. With arduino components.
[2]Kaneda, Y., Ibayashi, H., Oishi, N., & Mineno, H. (2015). Greenhouse environmental control system based on SW-SVR. Procedia Computer Science, 60(1). https://doi.org/10.1016/j.procs.2015.08.249
This paper includes information about the general design of a greenhouse automatic environment control system.
[3]Kokieva, G. E., Trofimova, V. S., & Fedorov, I. R. (2020). Greenhouse microclimate control. IOP Conference Series: Materials Science and Engineering, 1001(1). https://doi.org/10.1088/1757-899X/1001/1/012136
This paper discusses (the lack of) a mathematical model to control greenhouse temperature and heat transfer.
[4]Kumar, A., Singh, V., Kumar, S., Jaiswal, S. P., & Bhadoria, V. S. (2020). IoT enabled system to monitor and control greenhouse. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2020.11.040
This paper includes diagrams of arduino (components) and wiring to assemble a greenhouse management system.
[5]Sri Jahnavi, V., & Ahamed, S. F. (2015). Smart wireless sensor network for automated greenhouse. IETE Journal of Research, 61(2). https://doi.org/10.1080/03772063.2014.999834
This source includes information on all types of smart sensors aimed at a smart greenhouse.
[6]Von Borstel, F. D., Suárez, J., De La Rosa, E., & Gutiérrez, J. (2013). Feeding and water monitoring robot in aquaculture greenhouse. Industrial Robot, 40(1). https://doi.org/10.1108/01439911311294219
This paper contains the design of a robotic system to feed aquatic organisms and measure water physicochemical parameters in experimental aquaculture ponds. Our own system is focused on plants but the robotic monitoring of environmental parameters is of interest here.
[7]Zhang, C. (2018). Greenhouse intelligent control system based on microcontroller. AIP Conference Proceedings, 1955. https://doi.org/10.1063/1.5033697
This paper contains a chart with components of a greenhouse control system, including information on the circuitry per module, and a flow chart of how the software should work.
[8]Zhao, R., & Lu, L. (2020). Automatic Temperature and Humidity Detection and Alarm System for Greenhouse. IOP Conference Series: Earth and Environmental Science, 512(1). https://doi.org/10.1088/1755-1315/512/1/012099
This paper designs and implements the monitoring and alarm system of temperature and humidity of a greenhouse.
[9]Loram, A., Warren, P., Thompson, K., & Gaston, K. (2011). Urban Domestic Gardens: The Effects of Human Interventions on Garden Composition. Environmental Management, 48(4), 808–824. https://doi.org/10.1007/s00267-011-9723-3
This paper talks about how taking care of plants works stress-relieving.
[10]Pedrinolla, A., Tamburin, S., Brasioli, A., Sollima, A., Fonte, C., Muti, E., Smania, N., Schena, F., & Venturelli, M. (2019). An Indoor Therapeutic Garden for Behavioral Symptoms in Alzheimer’s Disease: A Randomized Controlled Trial. Journal of Alzheimer’s Disease, 71(3), 813–823. https://doi.org/10.3233/jad-190394
This paper is about fardening as a therapy for people with Alheimers disease.
[11]George, D. R. (2013). Harvesting the Biopsychosocial Benefits of Community Gardens. American Journal of Public Health, 103(8), e6. https://doi.org/10.2105/ajph.2013.301435
This paper is about how community gardens work for people with other mental illnesses, so it could also work on people with down syndrome.
[12]George, D. R., Kraschnewski, J. L., & Rovniak, L. S. (2011). Public Health Potential of Farmers’ Markets on Medical Center Campuses: A Case Study From Penn State Milton S. Hershey Medical Center. American Journal of Public Health, 101(12), 2226–2232. https://doi.org/10.2105/ajph.2011.300197
This paper is about how farmer-markets work positively on the health of people.
[13]Wieseler, N. A., Hanson, R. H., Chamberlain, T. P., & Thompson, T. (1988). Stereotypic behavior of mentally retarded adults adjunctive to a positive reinforcement schedule. Research in Developmental Disabilities, 9(4), 393–403. https://doi.org/10.1016/0891-4222(88)90033-9
A paper about a study which evaluated the indirect effects on stereotypic frequency when the value of a concurrent fixed-interval reinforcement schedule for adaptive behaviour was varied.
[14]Weatherley, P. E. (1976). Introduction: water movement through plants. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 273(927), 435–444. https://doi.org/10.1098/rstb.1976.0023
This paper explains how water movement in plants work.
[15]Carder, C. (2004). Irrigation systems. Rocky Mountain Construction, 85(20), 5. Retrieved from https://search-proquest-com.dianus.libr.tue.nl/trade-journals/irrigation-systems/docview/196317404/se-2?accountid=27128
A paper about the irrigation technology being used currently
[16]Vijendra Babu, D. (2020). Automatic Irrigation Systems for Efficient usage of Water using Embedded Control Systems. 993 012077
A paper about a similar project being done
[17]Mudiyanti, R. (2019). Design watering system on greenhouse using microcontroller with matrix based. iopscience.iop.org. 1280 022067
This paper is about desiging a watering system on a greenhouse using microcontroller with matrix based
[18]Gafni, V. (1999). Robots: A Real-Time Systems Architectural Style. ACM SIGSOFT Software Engineering Notes, 24(6), 1–18. https://doi.org/10.1145/318774.318786
This paper gives a broad description of what robots are
[19]Angela P. Presson, Ginger Partyka, … Edward R.B. McCabe, Current Estimate of Down Syndrome Population Prevalence in the United States, The Journal of Pediatrics, Volume 163, Issue 4, 2013, Pages 1163-1168, ISSN 0022-3476, https://doi.org/10.1016/j.jpeds.2013.06.013.
A paper about how often the syndrome of down occurs
[20]Robert A. Catalano, Down syndrome, Survey of Ophthalmology, Volume 34, Issue 5, 1990, Pages 385-398, ISSN 0039-6257, https://doi.org/10.1016/0039-6257(90)90116-D.
This paper goes really deep into what the syndrome of down actually is
[21]Mark Selikowitz. Down Syndrome. Vol 3rd ed. OUP Oxford; 2008. Accessed April 22, 2021. http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=467605&site=ehost-live
This paper is about raising children with down syndrome
[22]Chao, D., & Lin, H. (2010). The tricks plants use to reach appropriate light. Science China Life Sciences, 53(8), 916–926. https://doi.org/10.1007/s11427-010-4047-8
This paper explains how plants make sure they get the right amount of light, so not too much and not too little.
[23]Vanderbilt, V., & Grant, L. (1985). Plant Canopy Specular Reflectance Model. IEEE Transactions on Geoscience and Remote Sensing, GE-23(5), 722–730. https://doi.org/10.1109/tgrs.1985.289390
A model for the amount of light specularly reflected and polarised by a plant.
[24]Roberts, E., & Burleigh, M. (2010). Watering Systems for Success in Growing Plants, Using Low pH and Ammonium Nitrogen. Cactus and Succulent Journal, 82(6), 266–275. https://doi.org/10.2985/0007-9367-82.6.266
The paper describes what changes should be made to the water that is used in the system in order to get the best results.
[25]Drury, & Sally. (2011). Watering, bedding plants and tubs. Horticulture week, 34. https://search-proquest-com.dianus.libr.tue.nl/trade-journals/watering-bedding-plants-tubs/docview/872335545/se-2?accountid=27128
This paper explains when it is the best time of day to water certain plants.
[26]Rogers, P. (1993). Watering is crucial to plants: [ALL Edition]. Telegram & Gazette, G1. https://search-proquest-com.dianus.libr.tue.nl/newspapers/watering-is-crucial-plants/docview/268517145/se-2?accountid=27128
This paper explain why it is important that plants get the right amount of water.
User Needs and Preferences
People with Down syndrome have different needs and preferences compared to people without intellectual disabilities. A good product should address all of the users needs and as many possible preferences. So in order to develop a good product one should have a clear idea of what these needs and preferences are. To gather this information we have called several care-institutions asking them if they would be interested in helping us answer some questions and/or help test the first prototype. Secondly, we decided to also do a literary study into this subject to obtain even more information from other sources.
From the literature we have found that language development is moderately to severely compromised in some children with DS and that therefore most individuals with DS also have less developed language skills at all ages in life compared to people without an intellectual disability (Lemons, 2010) and (Chapman, 2000) To accommodate for this lack in linguistic skills there are a few things that one can do to improve communication with people with DS. Use repitition Show that you are pleased Be patient https://belovedshepherd.com/tips-communicating-with-a-person-with-downs-syndrome Helaas is dit geen echte source maar een website maar hier staat het wel heel duidelijk in.
Of course there are more items, but these were the ones that we identified to be the most important and the ones that we could play into.
From the care-institutions we concluded…………..
Lemons CJ, Fuchs D. Phonological awareness of children with Down syndrome: its role in learning to read and the effectiveness of related interventions. Res Dev Disabil. 2010 Mar-Apr;31(2):316-30. doi: 10.1016/j.ridd.2009.11.002. Epub 2009 Nov 30. PMID: 19945821.
Chapman, Robin & Seung, Hye-Kyeung & Schwartz, Scott & Bird, Elizabeth. (2000). Predicting Language Production in Children and Adolescents With Down Syndrome. Journal of speech, language, and hearing research : JSLHR. 43. 340-50. 10.1044/jslhr.4302.340.
Questionaire answers from a caretaker
In order to get a deeper understanding how people with Down's syndrome would or could react to our project contact was sought with a caretaker. This caretaker has around 10 years of experience with these particular patients, this means that the answers to the questions are usefull to the project at hand. In the following text first the questions will be posed after which the answers are written. Lastly some extra pointers given by the caretaker will be mentioned.
Q) What would people with Down's syndrome need in daily life that this plant can help with?(To combat boredom for example)
A) Becoming more independant, that is a hot item at the moment. Caretakers want theur patients to be able to live as long as possible on their own.
Q) Do you think that our project can improve their daily life?
A) Not only do plants make sure that there is cleaner/better quality of air in the patients room, but they also get thought to take care of the plant in a creative and playfull manner.
Q) Do you think that our project would need to het more funtions?
A) Only sound might not be enough, it can become quite noise in care homes. But these patients also react very well to a combination of visual and auditive stimulation. The visual stimulation does not need to be complicated, colors would suffice, so for example a yellow light means more sunlight or a blue light means more water. This way they also get a more satisfactory feeling in the long run. These patients also forget general tasks quite a bit, this would be giving water in regular intervals for example, a solution would be the use of so called 'pictokaarten' and a weekly schedule. These pictokaarten are designed to not give any confusion on the action that has to be taken and the weekly schedule gives them a place where they can easily find the tasks that have to be done on a certain day. Direct tasks, for example more sunlight, would be perfect in an visual/auditive stimulation.
Q) What would be the best way for our project to approach people with Down's syndrome?
A) The best way to approach them is in a positive and cheerfull way yet the message has to be simple and clear, and thank/compliment them if they performed the task well. For our project the following 3 suggestions were given: 1. 'I am thirsty, could you give me some water?', 'Thank you, now I am not thirsty anymore.' 2. 'I am quite hot, would you mind placing me in the shade?', 'Now I am nice and cool, thank you.' 3. 'I am quite cold, would you mind placing me in the sun?', 'Thank you, now I am not cold anymore.' What might help the patients in the long run is some sort of checklist, these already get used now to see if they keep getting a better understanding of the tasks they are performing. This checklist could ask what color lamp has what meaning for example, this can then be excecuted with their caretaker.
Some general remarks.
- People with Down's syndrome have different levels of mental capabilities depending on their IQ. The caretaker mentioned that our project would work best with patients that have the same mental capabilities as 6-10 year olds. Some level of understanding is needed since we are trying to learn them to care.
- They love cables that they can see. These have to be tucked away, it might not harm them but they will pull on them.
- the site botsbegleiding.nl(teachh) can be used as a usefull source, it officially is a site for autism but the thought processes are quite the same as those we can use.