PRE2020 3 Group11: Difference between revisions
TUe\20182751 (talk | contribs) No edit summary |
TUe\20182751 (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
Group 11 - | Group 11 | ||
== The acceptance of self-driving cars == | |||
---- | |||
== Problem statement == | |||
What are the relevant factors that contribute to the acceptance of self-driving cars for the private end-user? | |||
Self-driving cars are believed to be more safe than manually driven cars. However, they can not be a 100% safe. Because crashes and collisions are unavoidable, self-driving cars should be programmed for responding to situations where accidents are highly likely or unavoidable (Sven Nyholm, Jilles Smids, 2016). There are three moral problems involving self-driving cars. First, the problem of who decides how self-driving cars should be programmed to deal with accidents exists. Next, the moral question who has to take the moral and legal responsibility for harms caused by self-driving cars is asked. Finally, there is the decision-making of risks and uncertainty. | |||
There is the trolley problem, which is a moral problem because of human perspective on moral decisions made by machine intelligence, such as self-driving cars. For example, should a self-driving car hit a pregnant woman or swerve into a wall and kill its four passengers? There is also a moral responsibility for harms caused by self-driving cars. Suppose, for example, when there is an accident between an autonomous car and a conventional car, this will not only be followed by legal proceedings, it will also lead to a debate about who is morally responsible for what happened (Sven Nyholm, Jilles Smids, 2016). | |||
A lot of uncertainty is involved with self-driving cars. The self-driving car cannot acquire certain knowledge about the truck’s trajectory, its speed at the time of collision, and its actual weight. Second, focusing on the self-driving car itself, in order to calculate the optimal trajectory, the self-driving car needs to have perfect knowledge of the state of the road, since any slipperiness of the road limits its maximal deceleration. Finally, if we turn to the elderly pedestrian, again we can easily identify a number of sources of uncertainty. Using facial recognition software, the self-driving car can perhaps estimate his age with some degree of precision and confidence. But it may merely guess his actual state of health (Sven Nyholm, Jilles Smids, 2016). | |||
The decision-making about self-driving cars is more realistically represented as being made by multiple stakeholders; ordinary citizens, lawyers, ethicists, engineers, risk assessment experts, car-manufacturers, government, etc. These stakeholders need to negotiate a mutually agreed-upon solution (Sven Nyholm, Jilles Smids, 2016). This report will focus on the relevant factors that contribute to the acceptance of self-driving cars with the main focus on the private end-user. Taking into account the ethical theories: utilitarianism, kantianism, virtue ethics, deontology, ethical plurism, ethical absolutism and ethical relativism, the moral and legal responsibility, safety, security, privacy and the perspective of the private end-user. |
Revision as of 20:32, 28 February 2021
Group 11
The acceptance of self-driving cars
Problem statement
What are the relevant factors that contribute to the acceptance of self-driving cars for the private end-user?
Self-driving cars are believed to be more safe than manually driven cars. However, they can not be a 100% safe. Because crashes and collisions are unavoidable, self-driving cars should be programmed for responding to situations where accidents are highly likely or unavoidable (Sven Nyholm, Jilles Smids, 2016). There are three moral problems involving self-driving cars. First, the problem of who decides how self-driving cars should be programmed to deal with accidents exists. Next, the moral question who has to take the moral and legal responsibility for harms caused by self-driving cars is asked. Finally, there is the decision-making of risks and uncertainty. There is the trolley problem, which is a moral problem because of human perspective on moral decisions made by machine intelligence, such as self-driving cars. For example, should a self-driving car hit a pregnant woman or swerve into a wall and kill its four passengers? There is also a moral responsibility for harms caused by self-driving cars. Suppose, for example, when there is an accident between an autonomous car and a conventional car, this will not only be followed by legal proceedings, it will also lead to a debate about who is morally responsible for what happened (Sven Nyholm, Jilles Smids, 2016).
A lot of uncertainty is involved with self-driving cars. The self-driving car cannot acquire certain knowledge about the truck’s trajectory, its speed at the time of collision, and its actual weight. Second, focusing on the self-driving car itself, in order to calculate the optimal trajectory, the self-driving car needs to have perfect knowledge of the state of the road, since any slipperiness of the road limits its maximal deceleration. Finally, if we turn to the elderly pedestrian, again we can easily identify a number of sources of uncertainty. Using facial recognition software, the self-driving car can perhaps estimate his age with some degree of precision and confidence. But it may merely guess his actual state of health (Sven Nyholm, Jilles Smids, 2016).
The decision-making about self-driving cars is more realistically represented as being made by multiple stakeholders; ordinary citizens, lawyers, ethicists, engineers, risk assessment experts, car-manufacturers, government, etc. These stakeholders need to negotiate a mutually agreed-upon solution (Sven Nyholm, Jilles Smids, 2016). This report will focus on the relevant factors that contribute to the acceptance of self-driving cars with the main focus on the private end-user. Taking into account the ethical theories: utilitarianism, kantianism, virtue ethics, deontology, ethical plurism, ethical absolutism and ethical relativism, the moral and legal responsibility, safety, security, privacy and the perspective of the private end-user.