Summary of Literature's: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(2 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
*[[Solar-based atmospheric water generator utilisation of a freshwater recovery: A numerical study]]<ref>Kabeel, A., Abdulaziz, M., & El-Said, E. M. (2014). Solar-based atmospheric water generator utilisation of a fresh water recovery: A numerical study. International Journal of Ambient Energy,37(1), 68-75. doi:10.1080/01430750.2014.882864</ref> | *[[Solar-based atmospheric water generator utilisation of a freshwater recovery: A numerical study]]<ref>Kabeel, A., Abdulaziz, M., & El-Said, E. M. (2014). Solar-based atmospheric water generator utilisation of a fresh water recovery: A numerical study. International Journal of Ambient Energy,37(1), 68-75. doi:10.1080/01430750.2014.882864</ref> | ||
*[[A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion]]<ref>Freeberg, Jon T., "A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion" (2010). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3550</ref> | *[[A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion]]<ref>Freeberg, Jon T., "A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion" (2010). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3550</ref> | ||
*[[Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging]]<ref>Birnie, D. P. (2016). Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging. Solar Energy, 125, 219-226. doi:10.1016/j.solener.2015.12.014</ref> | *[[Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging]]<ref>Birnie, D. P. (2016). Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging. Solar Energy, 125, 219-226. doi:10.1016/j.solener.2015.12.014</ref> | ||
*[[ A Moving Solar Roof for a Hybrid Solar Vehicle]]<ref>Coraggio, G., Pisanti, C., Rizzo, G., & Senatore, A. (2010). A Moving Solar Roof for a Hybrid Solar Vehicle. IFAC Proceedings Volumes, 43(7), 67-74. doi:10.3182/20100712-3-de-2013.00048</ref> | *[[ A Moving Solar Roof for a Hybrid Solar Vehicle]]<ref>Coraggio, G., Pisanti, C., Rizzo, G., & Senatore, A. (2010). A Moving Solar Roof for a Hybrid Solar Vehicle. IFAC Proceedings Volumes, 43(7), 67-74. doi:10.3182/20100712-3-de-2013.00048</ref> | ||
Line 10: | Line 9: | ||
*[[The sand erosion performance of coatings]]<ref>Wood, R. J. K. (1999). The sand erosion performance of coatings. Materials and Design, 20(4), 179-191. doi:10.1016/S0261-3069(99)00024-2</ref> | *[[The sand erosion performance of coatings]]<ref>Wood, R. J. K. (1999). The sand erosion performance of coatings. Materials and Design, 20(4), 179-191. doi:10.1016/S0261-3069(99)00024-2</ref> | ||
*[[A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications]]<ref>Sukkarieh, S., Nebot, E. M., Durrant-Whyte, H. F. (1999). A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications. IEEE Transactions on Robotics and Automation, 15(3), 572-578. doi:10.1109/70.768189</ref> | *[[A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications]]<ref>Sukkarieh, S., Nebot, E. M., Durrant-Whyte, H. F. (1999). A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications. IEEE Transactions on Robotics and Automation, 15(3), 572-578. doi:10.1109/70.768189</ref> | ||
*[[Advanced oxidation processes (AOP) for water purification and recovery]]<ref>Shemer, H., Sagiv, A., Holenberg, M., & Maor, A. Z. (n.d.). Filtration characteristics of threaded microfiber water filters. Filtration Characteristics of Threaded Microfiber Water Filters. doi:https://www-sciencedirect-com.dianus.libr.tue.nl/science/article/pii/S0011916417310305</ref> | |||
*[[Polystyrene-halloysite nano tube membranes for water purification]]<ref>Buruga, K., Kalathi, J. T., Kim, K., Ok, Y. S., & Danil, B. (2018). Polystyrene-halloysite nano tube membranes for water purification. Journal of Industrial and Engineering Chemistry, 61, 169-180. doi:10.1016/j.jiec.2017.12.014</ref> | |||
*[[Prospects of incorporation of nanoparticles in molten salt for water purification]]<ref>Huq, M., & Ahmed, S. (2018). Prospects of incorporation of nanoparticles in molten salt for water purification. Renewable and Sustainable Energy Reviews, 82, 2814-2819. doi:10.1016/j.rser.2017.10.004</ref> | |||
*[[Energy efficient drinking water purification system using TiO2 solar reactor with traditional methods]]<ref>Murugan, R., & Ram, C. G. (2018). Energy efficient drinking water purification system using TiO 2 solar reactor with traditional methods. Materials Today: Proceedings,5(1), 415-421. doi:10.1016/j.matpr.2017.11.100</ref> | |||
*[[Filtration characteristics of threaded microfiber water filters]]<ref>Shemer, H., Sagiv, A., Holenberg, M., & Maor, A. Z. (2018). Filtration characteristics of threaded microfiber water filters. Desalination,431, 80-85. doi:10.1016/j.desal.2017.07.009</ref> | |||
*[[An Analysis of Water Collection Labor among Women and Children in 24 Sub-Saharan African Countries]]<ref>Graham JP, Hirai M, Kim S-S (2016) An Analysis of Water Collection Labor among Women and Children in 24 Sub-Saharan African Countries. PLoS ONE 11(6): e0155981. https://doi.org/10.1371/journal.pone.0155981 | |||
</ref> | |||
*[[HRI–" In the wild” In Rural India: A Feasibility Study]]<ref>Deshmukh, A., Krishna, S., Akshay, N., Vilvanathan, V., JV, S., & Bhavani, R. R. (2018). HRI–" In the wild” In Rural India: A Feasibility Study.</ref> | |||
*[[Visual detection and tracking of poorly structured dirt roads]]<ref>Fernandez, D., & Price, A. (2005, July). Visual detection and tracking of poorly structured dirt roads. In Advanced Robotics, 2005. ICAR'05. Proceedings., 12th International Conference on (pp. 553-560). IEEE.</ref> | |||
*[[A dynamic colour perception system for autonomous robot navigation on unmarked roads]]<ref>Narayan, A., Tuci, E., Labrosse, F., & Alkilabi, M. H. M. (2018). A dynamic colour perception system for autonomous robot navigation on unmarked roads. Neurocomputing, 275, 2251-2263.</ref> | |||
*[[Solar photovoltaic water pumping system - A comprehensive review]]<ref>Sontake, V. C., & Kalamkar, V. R. (2016). Solar photovoltaic water pumping system-A comprehensive review. Renewable and Sustainable Energy Reviews, 59, 1038-1067.</ref> | |||
*[[Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data]]<ref>J Taylor, C., & M Alley, W. (2001). Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data (Circular 1217). </ref> | |||
*[[Ground water recharge and age-depth profiles of intensively exploited groundwater resources in northwest India]]<ref>J Lapworth, D., M MacDonald, A., Krishan, G., S Rao, M., C Gooddy, D., & G Darling, W. (2015). Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India.</ref> | |||
*[[Design of a small-scale autonomous amphibious vehicle]]<ref>Frejek, M., & Nokleby, S. (2008). Design of small-scale autonomous amphibious vehicle.</ref> | |||
Latest revision as of 15:08, 13 May 2018
- Small Remotely Operated Screw-Propelled Vehicle[1]
- Production of Water from the Air: The Environmental Sustainability of Air-conditioning Systems through a More Intelligent Use of Resources. The Advantages of an Integrated System[2]
- Solar-based atmospheric water generator utilisation of a freshwater recovery: A numerical study[3]
- A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion[4]
- Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging[5]
- A Moving Solar Roof for a Hybrid Solar Vehicle[6]
- The MOPED framework: Object recognition and pose estimation for manipulation[7]
- The sand erosion performance of coatings[8]
- A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications[9]
- Advanced oxidation processes (AOP) for water purification and recovery[10]
- Polystyrene-halloysite nano tube membranes for water purification[11]
- Prospects of incorporation of nanoparticles in molten salt for water purification[12]
- Energy efficient drinking water purification system using TiO2 solar reactor with traditional methods[13]
- Filtration characteristics of threaded microfiber water filters[14]
- An Analysis of Water Collection Labor among Women and Children in 24 Sub-Saharan African Countries[15]
- HRI–" In the wild” In Rural India: A Feasibility Study[16]
- Visual detection and tracking of poorly structured dirt roads[17]
- A dynamic colour perception system for autonomous robot navigation on unmarked roads[18]
- Solar photovoltaic water pumping system - A comprehensive review[19]
- Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data[20]
- Ground water recharge and age-depth profiles of intensively exploited groundwater resources in northwest India[21]
- Design of a small-scale autonomous amphibious vehicle[22]
References
- ↑ Szewczyk, R., Zieliński, C., & Kaliczyńska, M. (2015). Progress in Automation, Robotics and Measuring Techniques. Cham: Springer. From pages 191 to 200.
- ↑ Magrini, A., Cattani, L., Cartesegna, M., & Magnani, L. (2015). Production of Water from the Air: The Environmental Sustainability of Air-conditioning Systems through a More Intelligent Use of Resources. The Advantages of an Integrated System. Energy Procedia,78, 1153-1158. doi:10.1016/j.egypro.2015.11.081
- ↑ Kabeel, A., Abdulaziz, M., & El-Said, E. M. (2014). Solar-based atmospheric water generator utilisation of a fresh water recovery: A numerical study. International Journal of Ambient Energy,37(1), 68-75. doi:10.1080/01430750.2014.882864
- ↑ Freeberg, Jon T., "A Study of Omnidirectional Quad-Screw-Drive Configurations for All-Terrain Locomotion" (2010). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/3550
- ↑ Birnie, D. P. (2016). Analysis of energy capture by vehicle solar roofs in conjunction with workplace plug-in charging. Solar Energy, 125, 219-226. doi:10.1016/j.solener.2015.12.014
- ↑ Coraggio, G., Pisanti, C., Rizzo, G., & Senatore, A. (2010). A Moving Solar Roof for a Hybrid Solar Vehicle. IFAC Proceedings Volumes, 43(7), 67-74. doi:10.3182/20100712-3-de-2013.00048
- ↑ Collet, A., Martinez, M., & Srinivasa, S. S. (2011). MOPED: Object recognition and pose estimation for manipulation. The International Journal of Robotics Research, 30(10), 1284-1306. doi:10.1177/0278364911401765
- ↑ Wood, R. J. K. (1999). The sand erosion performance of coatings. Materials and Design, 20(4), 179-191. doi:10.1016/S0261-3069(99)00024-2
- ↑ Sukkarieh, S., Nebot, E. M., Durrant-Whyte, H. F. (1999). A High Integrity IMU/GPS Navigation Loop for Autonomous Land Vehicle Applications. IEEE Transactions on Robotics and Automation, 15(3), 572-578. doi:10.1109/70.768189
- ↑ Shemer, H., Sagiv, A., Holenberg, M., & Maor, A. Z. (n.d.). Filtration characteristics of threaded microfiber water filters. Filtration Characteristics of Threaded Microfiber Water Filters. doi:https://www-sciencedirect-com.dianus.libr.tue.nl/science/article/pii/S0011916417310305
- ↑ Buruga, K., Kalathi, J. T., Kim, K., Ok, Y. S., & Danil, B. (2018). Polystyrene-halloysite nano tube membranes for water purification. Journal of Industrial and Engineering Chemistry, 61, 169-180. doi:10.1016/j.jiec.2017.12.014
- ↑ Huq, M., & Ahmed, S. (2018). Prospects of incorporation of nanoparticles in molten salt for water purification. Renewable and Sustainable Energy Reviews, 82, 2814-2819. doi:10.1016/j.rser.2017.10.004
- ↑ Murugan, R., & Ram, C. G. (2018). Energy efficient drinking water purification system using TiO 2 solar reactor with traditional methods. Materials Today: Proceedings,5(1), 415-421. doi:10.1016/j.matpr.2017.11.100
- ↑ Shemer, H., Sagiv, A., Holenberg, M., & Maor, A. Z. (2018). Filtration characteristics of threaded microfiber water filters. Desalination,431, 80-85. doi:10.1016/j.desal.2017.07.009
- ↑ Graham JP, Hirai M, Kim S-S (2016) An Analysis of Water Collection Labor among Women and Children in 24 Sub-Saharan African Countries. PLoS ONE 11(6): e0155981. https://doi.org/10.1371/journal.pone.0155981
- ↑ Deshmukh, A., Krishna, S., Akshay, N., Vilvanathan, V., JV, S., & Bhavani, R. R. (2018). HRI–" In the wild” In Rural India: A Feasibility Study.
- ↑ Fernandez, D., & Price, A. (2005, July). Visual detection and tracking of poorly structured dirt roads. In Advanced Robotics, 2005. ICAR'05. Proceedings., 12th International Conference on (pp. 553-560). IEEE.
- ↑ Narayan, A., Tuci, E., Labrosse, F., & Alkilabi, M. H. M. (2018). A dynamic colour perception system for autonomous robot navigation on unmarked roads. Neurocomputing, 275, 2251-2263.
- ↑ Sontake, V. C., & Kalamkar, V. R. (2016). Solar photovoltaic water pumping system-A comprehensive review. Renewable and Sustainable Energy Reviews, 59, 1038-1067.
- ↑ J Taylor, C., & M Alley, W. (2001). Ground-Water-Level Monitoring and the Importance of Long-Term Water-Level Data (Circular 1217).
- ↑ J Lapworth, D., M MacDonald, A., Krishan, G., S Rao, M., C Gooddy, D., & G Darling, W. (2015). Groundwater recharge and age-depth profiles of intensively exploited groundwater resources in northwest India.
- ↑ Frejek, M., & Nokleby, S. (2008). Design of small-scale autonomous amphibious vehicle.