Toplevel simulation: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
 
(12 intermediate revisions by the same user not shown)
Line 20: Line 20:
*should nearby piles get priority over harder to reach piles?
*should nearby piles get priority over harder to reach piles?
*should only path length matter, or should e.g. safety play a role in dropping path pheromones? (We may add this later, but for now we'll ignore this)
*should only path length matter, or should e.g. safety play a role in dropping path pheromones? (We may add this later, but for now we'll ignore this)
==Code==
This isn't functioning yet (more work needs to be done) but this is what we have so far (06-12-2015 21:55)
(it's written in Python 2.7.9)
#note to self: better garbage collection still needed
#idea: re-implement the paths so that new starts can benefit from the updating
#before the whole path has been followed
#todo add parameters for ethical choices
#todo implement cone vision in accordance to the actual robots
import random
import math
class AO(object):
    """Represents area of operation"""
#todo: implement something for keeping track of interesting statistics
    __size = None
    __obstacles = None
    __piles = None
    robotsInAO = None
    blackboard =None
    CZ=None
    l=2#the "sensitivity of the choice process"
    speed=1
    def __init__(self, size, cz, nRobots, piles, obstacles, evaporatePile = lambda x:x, evaporatePath = lambda x:x, dropPile = lambda x,y,z:y+1, dropPath = lambda x,y:x+1, l=2, speed=1):
        """
        needs as input:
        -the size of the AO
        -the coordinates for the CZ (just one point for now)
        -the number of robots
        -a list of piles
            two points per pile giving two corners of the pile which is assumed to be rectangular (possibly degenerated)
            a list of objects as ints indicating the number of robots needed to move the object
            e.g. [ ((1,2), (3,4), [1,1,6,3,1]), ((6,7), (8,12), [3,1,1,3,4])]
        -a list of obstacles
            two points per obstacle giving two corners of the obstacle which is assumed to be rectangular (possibly degenerated)
            e.g. [((1,1),(2,2)), ((3,1),(4,3))]
        -a function that determines the speed of evaporation of the pheromones for the piles (mapping floats to floats in a suitable manner)
        -a function that determines the speed of evaporation of the pheromones for the paths (mapping floats to floats in a suitable manner)
        -a function called by a robot to increase the pheromone concentration at a pile (three arguments: pilesize, pheromone concentration, treshold)
        -a function called by a robot to increase the pheromone concentration at a path (to floats)
        """
        self.l=l#the "sensitivity of the choice process"
        self.speed=speed
        self.__size = (int(size[0]),int(size[1]))
        #automatically checks for right type this way
        self.CZ=(int(cz[0]),int(cz[1]))
        self.__evaporatePile=evaporatePile
        self.__dropPile=dropPile
        self.__evaporatePath=evaporatePath
        self.__dropPath=dropPath
        #for i in range(nRobots):
            #self.robotsInAO.append(Robot(self.CZ,self.__drop))#fill the list with robots
        #want to fill the list of robots one at a time so they don't all live at the same time
        self.numrobots=nRobots
        self.__piles=[]
        for pile in piles:#create all the piles according to input
            self.__piles.append(Pile(
                (int(pile[0][0]),int(pile[0][1])),
                (int(pile[1][0]),int(pile[1][1])),
                [int(obj) for obj in pile[2]]))
        self.__obstacles = []
        for obstacle in obstacles:
            #all obstacles are assumed to be rectangles
            self.__obstacles.append((
                (int(obstacle[0][0]),int(obstacle[0][1])),
                (int(obstacle[1][0]),int(obstacle[1][1]))))
        self.robotsInAO = []
        self.blackboard = []
    def update(self):
        if self.numrobots>0:#release robots one at a time
            self.robotsInAO.append(Robot(self, self.CZ, self.__dropPile, self.__dropPath))
            self.numrobots--
        for robot in self.robotsInAO:
            robot.update()
            for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=robot.coordinates[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                    min(pile.coordinates[0][1],pile.coordinates[1][1])<=robot.coordinates[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    #the robot has arrived at the pile
                    pile.update(robot, self)
        #self.pheromones= map(self.__evaporate,self.pheromones)#negative feedback on the pheromones
#todo: implement evaporation
        return len(self.__piles)#this will be the check for the main loop
    def removePile(self, pile):
        pile.dropRobots()
        self.__piles.remove(pile)
#todo: remove pile from blackboard
    def totalRobots(self):
        return len(self.robotsInAO)+sum([pile.totalRobots() for pile in self.__piles)])
    #def allowedMove(self, coordinates1, coordinates2):
    #    """Decides wether moving from coordinates1 to coordinates2 is possible"""
    #    #a move is possible if there is no obstacle intersecting with [coordinates1, coordinates2] and also no other pile than that at coordinates2 is intersecting with [coordinates1, coordinates2]
    #    length = ((coordinates2[0]-coordinates1[0])**2+(coordinates2[1]-coordinates1[1])**2)**.5
    #    direction = (float(coordinates2[0]-coordinates1[0])/length,
    #                float(coordinates2[1]-coordinates1[1])/length)
    #    line=[(round(coordinates1[0] + .1*n*direction[0]),round(coordinates1[1]+.1*n*direction[1])) for n in range(round(10*length)+1)]
    #isn't practical
    def getMovements(self,coordinates):
        freeSpace=[(coordinates[0]+n,coordinates[1]+m) for n in range(-self.speed,self.speed+1) for m in range(-self.speed, self.speed+1) if n*n+m*m<=self.speed*self.speed] #circle around the point
        pilepoints=[]
        for coord in freeSpace:
            #remove all points where there are obstacles
            for obstacle in self.__obstacles:
                if min(obstacle[0][0],obstacle[1][0])<=coord[0]<=max(obstacle[0][0],obstacle[1][0]) and  \
                    min(obstacle[0][1],obstacle[1][1])<=coord[1]<=max(obstacle[0][1],obstacle[1][1]):
                    freeSpace.remove(coord)
            for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=coord[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                    min(pile.coordinates[0][1],pile.coordinates[1][1])<=coord[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    pilepoints.append(coord)
        #now remove all coordinates that are blocked indirectly
#todo implement this
        return (freeSpace, pilepoints) #n.b. this way a robot might go to a pile unintendedly
    def getPileSizeAt(self, coordinates):
        """returns the pile size of the pile at the coordinates"""
        for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=coordinates[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                    min(pile.coordinates[0][1],pile.coordinates[1][1])<=coordinates[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    return pile.pileSize()
        return None
               
       
       
               
   
class Pile(object):
    __objects=None
    coordinates = None
    __que = None
    def __init__(self,coordinate1, coordinate2, *objects):
        #all piles are assumed to be rectangles
        self.__objects=[obj for obj in objects]
        self.__que=[]
        self.coordinates = (coordinate1, coordinate2)
    def update(self, robot, ao):
        self.__que.append(ao.robotsInAo.pop(ao.robotsInAo.index(robot)))
        try:
            if len(self.__que)>self.__objects[0]:
                obj=self.__objects.pop(0)#remove the object and get the number of needed robots
                for i in range(obj):
                    rob = self.__que.pop()#remove a robot from the que
                    rob.carrying = True #tell that robot it is carrying an object
                    rob.sendToCZ()#send that robot to the clear zone
                    ao.robotsInAO.append(rob)#add that robot to the list of the AO
            if len(self.__objects)==0:
                ao.removePile(self)#if the pile is empty, remove it from the list of piles
        except IndexError:
            ao.removePile(self)
    def totalRobots(self):
        return len(self.__que)
    def pileSize(self):
        return sum(self.__objects)#should change this so we also have  victims
    def dropRobots(self):
        for robot in self.__que:
            robot.carrying = True
            robot.sendToCZ()
            ao.robotsInAO.append(rob)
        self.__que=[]
class Robot(object):
    coordinates=None
    #Robots are assumed to be small enough to be well represented by a single coordinate
    __goal=None
    __task=None
    carrying=False
    __path=None
    __newpath=None
    ao=None
    __pathlength=0
    def __init__(self,ao, coordinates, dropPile, dropPath):
        self.coordinates=(int(coordinates[0]),int(coordinates[1]))
        self.__dropPile = dropPile
        self.__dropPath = dropPath
        self.ao= ao
    def sendToCZ(self):
        self.__goal = self.ao.CZ
        self.__task="Return"
        #choose the fastest known path to the CZ
        #maybe wan't to optimize on the path back too, but don't really feel like reversed path changing yet so maybe later
        #last coordinate was at the pile, so for simplicity assume it is still there
        pile=None
        for elem in self.ao.blackboard:
            if self.coordinates == elem[0]:
                pile=elem
                break
        minlen = min([path[0] for path in pile[3]])
        minlenpaths = [path for path in pile[3] if path[0]<= minlen+0.1]
        #choose a path of minimal length
        self.__path=minlenpaths[0]#all robots need to take the same one because they need to stay together
        self.pathindex=-1#since we're following backwards
       
#todo complete this
    def pickCoordinates(self, target, options):
        """
input: the floating point coordinates the robot wants to go to
output: integer coordinates in option that according to a combination of ceiling and floor correspond to target, or none if none exist
"""
        rounders=[math.floor, math.ceil]
        targets=[(fun1(target[0]),fun2(target[1])) for fun1 in rounders for fun2 in rounders]
        targets=[e for e in targets if e in options]
        if len(targets)=0: return None
        targets.sort(lambda a, b: cmp((a[0]-target[0])**2+(a[1]-target[1])**2, (b[0]-target[0])**2+(b[1]-target[1])**2))
        return targets[0]
   
    def update(self):
        if self.coordinates == self.ao.CZ:
            self.carrying = False
            self.__pathlength=0
            #assign a task and if needed a pile and a path
            rnum = random.random()
            if rnum>self.searchChoice():
                self.__task = "Search"
            else:
                self.__task = "Forage"
            #now, if it is assigned a forage task, pick a pile from the blackboard
            if self.__task=="Forage":
                #example of what a blackboard element may look like:
                #(coordinates, pheromone, treshold (k in the articles), [list of paths])
                #function from articles
                rnum = random.random()
                denominator = sum([(pile[1]+pile[2])**ao.l for pile in ao.blackboard])
                treshold = 0
                for pile in ao.blackboard:
                    treshold += (pile[1]+pile[2])**ao.l
                    if rnum <treshold:
                        self.__goal=pile[0]
                        #this is the pile it gets assigned too
                        #so now choose a path if available
                        if len(pile[3])>0:
                            rnum =random.random()#we don't need the previous rnum anymore since we'll now break from the loop
                            #now choosing from the known paths
                            #in the article it is done by pheromones but I'm now wondering why we shouldn't just do this by shortest known path
#todo: reconsider all of this
                            #OK, so instead of doing the pheromones for pathfinding, we'll let every robot pick either the shortest rout from the blackboard
                            #or find a new rout
                            #furthermore, to make short routs, instead of following the rout, we'll have the robot attempt to shorten it
                            #actually I now understand why you need the pheromone thing:
                            #the first found path gets optimized first so most newfound paths, when they're found, will not be shorter even though they leave more room for improvement
#todo: change all to pheromone based approach
                            if rnum >(0.25+(0.5*len(pile[3]))/(len(pile[3])+1)): # want to keep looking for new paths, but intensity should depend on number of known paths
#todo: think of a better distribution
                                #a path looks like (length (or pheromones), [coordinates])
                                minlen = min([path[0] for path in pile[3]])
                                minlenpaths = [path for path in pile[3] if path[0]<= minlen+0.1]#just in case more paths of minimal length exist (taking into account propperties of floats
                                self.__path=random.choice(minlenpaths)[-1]# want to keep using both since one might have more potential for updating than the other
                                #n.b. stochastics only yield good results for large number of robots
                                self.__newpath=[self.ao.CZ]
                                self.pathindex =0
                            else:
                                #seek for new path
                                self.__path=[]
                                self.__newpath=[self.ao.CZ]
#note to self: since now we're coming up with new paths for every robot, garbage collection should be performed on the blackboard
                        else:
                            self.__newpath=[self.ao.CZ]
                            self.__path=[]
                        break #we've found our pile and decided how to get there so break from the loop
                #basically, self.__task, self.__goal, self.__path, self.__pathlength and self.__newpath have been updated
        elif self.__task==None:
            #if robots start at a point different from the cz
            #probably need something better than this
#todo implement something better
            self.__task = "Search"
           
        movements= self.ao.getMovements(self.coordinates)#get the list of possible movements looks like [possiblemovements, reachablepiles]
        if self.__task == "Search":
            pass
#todo implement a good swarm-search algorithm
        elif self.__task == "Return":
            #simply follow the choosen path (choosen in sendToCZ()) backwards. No backwards optimization of the path at this point
#n.b. at this moment we assume no new obstacles are introduced during the simulation
#need to extend this part for if new obstacles are introduced
#basically need to do the same path finding algorithm as for the Forage when no path is selected except we need some way to keep the robots together (since they're pushing the same piece)
            if self.__path[self.pathindex-1] in movements[0]:
                coordinates = self.__path[self.pathindex-1]
                self.pathindex-=1
            else:
                pass
           
        elif self.__task == "Forage":
            if len(self.__path)>0:
                #find the next point to go to
                currentLength = len(self.__newpath)
                if self.__goal in movements[0]:
                    #we're there
                    self.__newpath.append(self.__goal)
                    self.__pathlength+=((self.coordinates[0]-self.__goal[0])**2 + (self.coordinates[1]-self.__goal[1])**2 )**.5
                    self.coordinates = self.__goal
                    #since self.__goal was a pile, after the update, the update() function of the ao will add this robot to the pile it's at
                    bbElement = None
                    for element in self.ao.blackboard:#find the corresponding pile in the blackboard
                        if element[0]==self.coordinates:
                            bbElement = element
                            break
#todo implement something to get rid of loops in the path (if there are any)
                    bbElement[-1].append((self.__pathlength, self.__newpath))
                    #do garbage collection over the blackboard element to prevent the blackboard from getting too large
                    minlen = min([path[0] for path in bbElement[-1]])
                    bbElement[-1] = [path for path in bbElement[-1] if path[0]<=1.2*minlen] #need to change this to pheromone based approach
                    #drop pheromones to pile
                    bbElement[1] = self.dropPile(self.ao.getPileSizeAt(self.__goal),*bbElement[1:3])
#todo change this to pheromone based approach
#todo consider implementing an algorithm that optimizes over the old path points
                else:
                    try:
                        proposedScale = ((self.coordinates[0]-self.__path[self.pathindex+2][0])**2 +(self.coordinates[1]-self.__path[self.pathindex+2][1])**2)**.5
                        proposedDirection = ((self.__path[self.pathindex+2][0]-self.coordinates[0])/proposedScale,(self.__path[self.pathindex+2][1]-self.coordinates[1])/proposedScale)
                        proposedCoordinate = pickCoordinates(((self.coordinates[0] + self.ao.speed*proposedDirection[0]),(self.coordinates[1] + self.ao.speed*proposedDirection[1])),movements[0])
                    except ZeroDivisionError:
                        proposedCoordinate = self.__path[self.pathindex+3]
                        self.pathindex+=1
                    self.pathindex+=1
                    if proposedCoordinate:#if it isn't None but some coordinates
#at this moment, robots might get into the wrong pile accidentally. Not sure if this is bad
                        self.__newpath.append(proposedCoordinate)
                        self.coordinates=proposedCoordinate
                        if self.__path[self.pathindex+2] in self.ao.getMovements(self.coordinates)[0]:#might want to reduce computation time by moving the getMovements
#todo: consider moving the getMovements step to other iteration since now we're computing twice
                            self.pathindex+=1
                    else:#the proposed move can't be executed
                        if self.__path[self.pathindex] in movements[0]:
                            self.__newpath.append(self.__path[self.pathindex])
                            self.coordinates = self.__path[self.pathindex]
                        elif self.path[self.pathindex-1] in movements[0]:#might need to think of something better than this (so that all the optimizations at parts of the path where
                            #everything went right don't get dismissed because of one point where it went wrong)
                            self.__newpath.append(self.__path[self.pathindex-1])
                            self.coordinates = self.__path[self.pathindex-1]
                            self.pathindex-=1
                        else:
                            raise Exception # might want to assume a new  obstacle is simply introduced and hence the old path has become invalid
                        #in this case we want to continue to searching for a new path
#todo: come up with an appropriate solution
                    self.pathlength+= ((self.__newpath[-1][0]-self.__newpath[-2][0])**2 + (self.__newpath[-1][1]-self.__newpath[-2][1])**2)**.5
#Problem: the proposed coordinates might be further away than the operation radius due to rounding off
#todo: fix this
#idea: maybe project to the boundary of the disc instead of using round?
            else:
                #the algorithm comes down to this:
                #try to move towards the goal
                #if that something is blocking that move goal:
                #  there is one minimal deflection to the left and one minimal deflection to the right, flip a coin between them
                #  except one of them means going back the same path, that's forbidden unless it's the only option
                goalScale = ((self.__goal[0]-self.coordinates[0])**2+(self.__goal[1]-self.coordinates[1])**2)**.5
                goalDirection = ((self.__goal[0]-self.coordinates[0])/goalScale,(self.__goal[1]-self.coordinates[1])/goalScale)
                goalCoordinate = (round(self.coordinates[0]+self.ao.speed*goalDirection[0]),round(self.coordinates[1]+self.ao.speed*goalDirection[1]))
                if goalCoordinate in movements[0]:
                    self.__newpath.append(goalCoordinate)
                    self.coordinates = goalCoordinate
                else:
                    #get the boundary of the circle with radius self.ao.speed around self.coordinates
                    circle = [(self.coordinates[0]+n,self.coordinates[1]+m) for n in range(-self.ao.speed, self.ao.speed+1) for m in range(-self.ao.speed, self.ao.speed+1)\
                              if n*n+m*m<=self.ao.speed**2 and (\
                        (abs(n)+1)*(abs(n)+1)+m*m >self.ao.speed**2 or
                        n*n+(abs(m)+1)*(abs(m)+1) >self.ao.speed**2)]
                    #take the intersection with movements[0]
                    choiceCircle = [point for point in circle if point in movements[0]]
                   
                    #now select from circle
#todo: implement this
                self.pathlength+=((self.__newpath[-1][0]-self.__newpath[-2][0])**2 + (self.__newpath[-1][1]-self.__newpath[-2][1])**2)**.5
#todo: implement this
#todo implement loop cutting at the moment a path is stored
    def searchChoice():
        """probability of a robot going for foraging"""
        #depending on the number of robots, size of the ao and number of known piles
        #this is just a place holder. The final choice will be based on USE decisions
        #for now we assume that there should be approximately 10 robots for every pile
        return min((10.*len(ao.blackboard))/ao.totalRobots,1) #although the min(...,1) doesn't really have any effect due to implementation
==Path updating idea==
For reducing path length the following idea is used (a bit more thoroughly implemented above, but it comes down to the following concept shown in mathematica code)
n.b. this is just a rough sketch to see the idea at work. It isn't robust (e.g. it can't handle loops very well in this form)
points = {{{0,0}, {0, -1}, {0, -2}, {1, -2}, {2, -2}, {3, -2}, {4, -2}, {4,-1}, {4, 0}, {4, 1}, {4, 2}, {3, 2}, {2, 2}, {1, 2}, {0, 2}, {0,3}, {0, 4}, {1, 4}, {2, 4}, {3, 4}, {4, 4}}}
While[Length[points] < 25,
  previousPath = points[[Length[points]]];
  newPath = <nowiki>{{0,0}}</nowiki>;
  While[newPath[[Length[newPath]]] != {4, 4},
  If[Norm[newPath[[Length[newPath]]] - {4, 4}] <= 1,
    AppendTo[newPath, {4, 4}];,
    AppendTo[newPath,
    N[newPath[[
        Length[newPath]]] + (previousPath[[Length[newPath] + 2]] -
          newPath[[Length[newPath]]])/
        Norm[(previousPath[[Length[newPath] + 2]] -
          newPath[[Length[newPath]]])]
      ]
    ]
    ]
  ];
  AppendTo[points, newPath]]
Manipulate[
  ListPlot[points<nowiki>[[i]]</nowiki>, Joined -> True, Mesh -> All], {i, 1,
  Length[points], 1}]
[[File:Pathshortningidea.gif]]
We've worked out the path updating idea a bit further and illustrated it in the following python code (it uses pygame), however we've come to the conclusion that a more graph based approach would yield better results and will work towards that.
"""more investigation on the path simplification algorithm"""
import pygame
from pygame.locals import *
import math
import os
def distance(a,b):
    return ((a[0]-b[0])**2+(a[1]-b[1])**2)**.5
class demo(object):
    speed=6
    def __init__(self, speed, size, iterations, path, obstacles, waitingtime=100):
        self.speed=speed
        self.size=size
        self.pathlist=[path]
        self.iterations=iterations
        self.obstacles=obstacles#leave this out for now
        self.waitingtime=waitingtime
        self.simplify()
        self.run()
    def pickCoordinates(self, target, options):
        rounders=[math.floor, math.ceil]
        targets=[(fun1(target[0]),fun2(target[1])) for fun1 in rounders for fun2 in rounders]
        targets=[e for e in targets if e in options]
        if len(targets)==0: return None
        targets.sort(lambda a, b: cmp((a[0]-target[0])**2+(a[1]-target[1])**2, (b[0]-target[0])**2+(b[1]-target[1])**2))
        return targets[0]
    def pickDirection(self, coordinates, target):#bad name but who cares
        denom= distance(coordinates, target)
        if denom==0: return None
        direction= ( coordinates[0] + self.speed *(target[0]-coordinates[0])/denom,
                      coordinates[1] + self.speed *(target[1]-coordinates[1])/denom)
        return direction
    def getMovements(self, coordinates):
        freeSpace=[(coordinates[0]+n,coordinates[1]+m) for n in range(-self.speed,self.speed+1) for m in range(-self.speed, self.speed+1) if n*n+m*m<=self.speed*self.speed]
        #circle around the point
        for obstacle in self.obstacles:
            if min(obstacle[0][0],obstacle[1][0])<=coord[0]<=max(obstacle[0][0],obstacle[1][0]) and  \
                min(obstacle[0][1],obstacle[1][1])<=coord[1]<=max(obstacle[0][1],obstacle[1][1]):
                freeSpace.remove(coord)
        return freeSpace
       
    def simplify(self):
        begin=self.pathlist[0][0]
        end=self.pathlist[0][-1]
        for i in range(self.iterations):
            newpath=[begin]
            index=0
            while newpath[-1]!=end:
                try:
                    if distance(newpath[-1], self.pathlist[-1][index+2])<=self.speed:
                        index+=1
                except IndexError:
                    if distance(newpath[-1], end)>self.speed:
                        print "got the index error, "+str(distance(newpath[-1],self.pathlist[-1][index+1]))
                    pass
                if distance(newpath[-1],end)<=self.speed:
                    #need something better than this for when obstacles are introduced
                    newpath.append(end)
                elif distance(newpath[-1],end)<=2.1*self.speed:
                    #really really need something better than this for when obstacles are introduced
                    movements = self.getMovements(newpath[-1])
                    direction = self.pickDirection(newpath[-1], end)
                    newpoint = self.pickCoordinates(direction, movements)
                    if newpoint:
                        newpath.append(newpoint)
                    else:
                        dindex=2
                        while not newpoint and dindex>-3:
                            try:
                                direction = self.pickDirection(newpath[-1],self.pathlist[-1][index+dindex])
                                newpoint = self.pickCoordinates(direction, movements)
                            except IndexError:
                                pass
                            dindex -=1
                        if not newpoint:
                            print "I don't get it anymore, "+ str(index)
                            self.pathlist.append(newpath)
                            raise Exception
                        newpath.append(newpoint)
                else:
                    movements = self.getMovements(newpath[-1])
                    direction = self.pickDirection(newpath[-1], self.pathlist[-1][index+2])
                    if direction:
                        newpoint = self.pickCoordinates(direction, movements)
                        #need to change this when obstacles are introduced
                        newpath.append(newpoint)
                        index+=1
                    else:
                        index+=2
            self.pathlist.append(newpath)
    def run(self):
        running = True
        #before initialising object, furst run pygame.init()
        self.displaysurface = pygame.display.set_mode(self.size, pygame.HWSURFACE | pygame.DOUBLEBUF)
        path= os.path.dirname(__file__)
        pointsurface = pygame.image.load(os.path.join(path, "blp.bmp")).convert()
        #
        while running:
            if pygame.QUIT in pygame.event.get()>0:
                running = False
            for path in self.pathlist:
                self.displaysurface.fill((0,0,0))
                for point in path:
                    self.displaysurface.blit(pointsurface, point)
                pygame.display.flip()
                pygame.time.wait(self.waitingtime)
        pygame.quit()
                       
                       
#all the below is old
def simplifyPath(path, iterations):
    pathlist=[path]
    begin=path[0]
    end=path[-1]
    for i in range(iterations):
        newpath=[begin]
        index=0
        while newpath[-1]!=end:
            #if distance(newpath[-1],pathlist[-1][index+1])>1: print distance(newpath[-1],pathlist[-1][index+1])
            #the problem is in the rounding off
            try:
                if distance(newpath[-1], pathlist[-1][index+2])<=1:
                    index+=1
                    #print "did it at index "+str(index) +" with pathlist length "+str(len(pathlist))
            except IndexError:
                if distance(newpath[-1], end)>1:
                    print "got the index error, "+str(distance(newpath[-1],pathlist[-1][index+1]))
                pass
            if distance(newpath[-1], end)<=1:
                newpath.append(end)
            elif distance(newpath[-1], end)<=2:
                denom=distance(newpath[-1],end)
                newpoint = (round(newpath[-1][0] + (end[0]-newpath[-1][0])/denom),round(newpath[-1][1] + (end[1]-newpath[-1][1])/denom))
                newpath.append(newpoint)
                index+=1 #not necessary
            else:
                denom=((newpath[-1][0]-pathlist[-1][index+2][0])**2 +\
                        (newpath[-1][1]-pathlist[-1][index+2][1])**2 )**.5
                if denom!=0:
                    newpoint = (round(newpath[-1][0] + \
                                      (pathlist[-1][index+2][0] - newpath[-1][0])/denom,1),
                                round(newpath[-1][1] + \
                                      (pathlist[-1][index+2][1] - newpath[-1][1])/denom,1))
                    newpath.append(newpoint)
                    index+=1
                else:
                    index+=2
        pathlist.append(newpath)
    return pathlist
def mathematify(pathlist):
    return str(pathlist).replace("[","{").replace("(","{").replace("]","}").replace(")","}")
   
def givepath(start, n, direction, speed):
    scale = distance(direction, (0,0))
    scaleddirection = (speed*direction[0]/scale, speed*direction[1]/scale)
    path=[start]
    while len(path)<=n:
        path.append((round(path[-1][0]+scaleddirection[0],1), round(path[-1][1]+scaleddirection[1],1)))
    return path
if __name__=="__main__":
    pygame.init()
    startingpath = givepath((0,0),20,(0,1),20)
    startingpath += givepath(startingpath[-1],30,(1,0),20)
    #startingpath += givepath(startingpath[-1],20,(0,-1),10)
    demonstration = demo(20,(600,400), 150, startingpath, [], 50)
==Issues==
A downside to all of this is that it relies heavily on a coordinate system, so without that, it might be significantly harder (although much of the pheromone stuff would work without a coordinate system in the case of physical pheromones, and there seem to be some papers around that use some sort of local blackboard for pheromones that does not depend on coordinates).
Furthermore, the ant colony algorithms are essentially graph algorithms, so we will opt for a heuristic algorithm instead.

Latest revision as of 20:33, 17 January 2016

Back to: PRE2015_2_Groep1

Top level behavioural algorithm

Outline of the idea for an algorithm, based on the ideas presented in [Liu B Chen P Wang G], [Qi G Song P Li K] and [Nicolis S Detrain C Demolin D Deneubourg J]:

Initially (i.e. when the blackboard is empty): all robots departing from the CZ are assigned a search task (need to implement a good search algorithm)

  • when pile is found by a robot: add the pile to the blackboard (coordinates and pheromones)

When a robot departs from CZ when the blackboard is non-empty:

  • decide (stochastically) whether to search or to forage (based on size of blackboard)
  • if decided to go forage, pick a pile from the blackboard (stochastically based on pheromones)
  • then if pile is picked, if paths are known, pick a path based on pheromones, else (if no paths are known yet): move in the direction of the pile in such a way that if obstacles are encountered a way around them it is found stochastically. Keep track of the path.

When a robot arrives at a pile: update pheromones (if path is kept track of, add path to blackboard) and go to que of pile

At every time step, some pheromone "evaporates" from the blackboard.

n.b. in the dropping the pheromones and in choosing whether to search or to forage, USE aspects come in to play:

  • how much priority should rescuing known victims get over searching for new victims?
  • how much more priority should a pile get if we know it has n victims? (Later to be added to simulation)
  • should nearby piles get priority over harder to reach piles?
  • should only path length matter, or should e.g. safety play a role in dropping path pheromones? (We may add this later, but for now we'll ignore this)

Code

This isn't functioning yet (more work needs to be done) but this is what we have so far (06-12-2015 21:55) (it's written in Python 2.7.9)

#note to self: better garbage collection still needed
#idea: re-implement the paths so that new starts can benefit from the updating
#before the whole path has been followed

#todo add parameters for ethical choices
#todo implement cone vision in accordance to the actual robots
import random
import math

class AO(object):
    """Represents area of operation"""
#todo: implement something for keeping track of interesting statistics
    __size = None
    __obstacles = None
    __piles = None
    robotsInAO = None
    blackboard =None
    CZ=None
    l=2#the "sensitivity of the choice process"
    speed=1

    def __init__(self, size, cz, nRobots, piles, obstacles, evaporatePile = lambda x:x, evaporatePath = lambda x:x, dropPile = lambda x,y,z:y+1, dropPath = lambda x,y:x+1, l=2, speed=1):
        """
        needs as input:
        -the size of the AO
        -the coordinates for the CZ (just one point for now)
        -the number of robots
        -a list of piles
            two points per pile giving two corners of the pile which is assumed to be rectangular (possibly degenerated)
            a list of objects as ints indicating the number of robots needed to move the object
            e.g. [ ((1,2), (3,4), [1,1,6,3,1]), ((6,7), (8,12), [3,1,1,3,4])]
        -a list of obstacles
            two points per obstacle giving two corners of the obstacle which is assumed to be rectangular (possibly degenerated)
            e.g. [((1,1),(2,2)), ((3,1),(4,3))]
        -a function that determines the speed of evaporation of the pheromones for the piles (mapping floats to floats in a suitable manner)
        -a function that determines the speed of evaporation of the pheromones for the paths (mapping floats to floats in a suitable manner)
        -a function called by a robot to increase the pheromone concentration at a pile (three arguments: pilesize, pheromone concentration, treshold)
        -a function called by a robot to increase the pheromone concentration at a path (to floats)
        """
        self.l=l#the "sensitivity of the choice process"
        self.speed=speed
        self.__size = (int(size[0]),int(size[1]))
        #automatically checks for right type this way
        self.CZ=(int(cz[0]),int(cz[1]))
        self.__evaporatePile=evaporatePile
        self.__dropPile=dropPile
        self.__evaporatePath=evaporatePath
        self.__dropPath=dropPath
        #for i in range(nRobots):
            #self.robotsInAO.append(Robot(self.CZ,self.__drop))#fill the list with robots
        #want to fill the list of robots one at a time so they don't all live at the same time
        self.numrobots=nRobots

        self.__piles=[]
        for pile in piles:#create all the piles according to input
            self.__piles.append(Pile(
                (int(pile[0][0]),int(pile[0][1])),
                (int(pile[1][0]),int(pile[1][1])),
                [int(obj) for obj in pile[2]]))
        self.__obstacles = []
        for obstacle in obstacles:
            #all obstacles are assumed to be rectangles
            self.__obstacles.append((
                (int(obstacle[0][0]),int(obstacle[0][1])),
                (int(obstacle[1][0]),int(obstacle[1][1]))))
        self.robotsInAO = []
        self.blackboard = []
    def update(self):
        if self.numrobots>0:#release robots one at a time
            self.robotsInAO.append(Robot(self, self.CZ, self.__dropPile, self.__dropPath))
            self.numrobots--
        for robot in self.robotsInAO:
            robot.update()
            for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=robot.coordinates[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                   min(pile.coordinates[0][1],pile.coordinates[1][1])<=robot.coordinates[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    #the robot has arrived at the pile
                    pile.update(robot, self)
        #self.pheromones= map(self.__evaporate,self.pheromones)#negative feedback on the pheromones
#todo: implement evaporation
        return len(self.__piles)#this will be the check for the main loop
    def removePile(self, pile):
        pile.dropRobots()
        self.__piles.remove(pile)
#todo: remove pile from blackboard
    def totalRobots(self):
        return len(self.robotsInAO)+sum([pile.totalRobots() for pile in self.__piles)])
    #def allowedMove(self, coordinates1, coordinates2):
    #    """Decides wether moving from coordinates1 to coordinates2 is possible"""
    #    #a move is possible if there is no obstacle intersecting with [coordinates1, coordinates2] and also no other pile than that at coordinates2 is intersecting with [coordinates1, coordinates2]
    #    length = ((coordinates2[0]-coordinates1[0])**2+(coordinates2[1]-coordinates1[1])**2)**.5
    #    direction = (float(coordinates2[0]-coordinates1[0])/length,
    #                 float(coordinates2[1]-coordinates1[1])/length)
    #    line=[(round(coordinates1[0] + .1*n*direction[0]),round(coordinates1[1]+.1*n*direction[1])) for n in range(round(10*length)+1)]
    #isn't practical
    def getMovements(self,coordinates):
        freeSpace=[(coordinates[0]+n,coordinates[1]+m) for n in range(-self.speed,self.speed+1) for m in range(-self.speed, self.speed+1) if n*n+m*m<=self.speed*self.speed] #circle around the point
        pilepoints=[]
        for coord in freeSpace:
            #remove all points where there are obstacles
            for obstacle in self.__obstacles:
                if min(obstacle[0][0],obstacle[1][0])<=coord[0]<=max(obstacle[0][0],obstacle[1][0]) and  \
                   min(obstacle[0][1],obstacle[1][1])<=coord[1]<=max(obstacle[0][1],obstacle[1][1]):
                    freeSpace.remove(coord)
            for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=coord[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                   min(pile.coordinates[0][1],pile.coordinates[1][1])<=coord[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    pilepoints.append(coord)
        #now remove all coordinates that are blocked indirectly
#todo implement this
        return (freeSpace, pilepoints) #n.b. this way a robot might go to a pile unintendedly
    def getPileSizeAt(self, coordinates):
        """returns the pile size of the pile at the coordinates"""
        for pile in self.__piles:
                if min(pile.coordinates[0][0],pile.coordinates[1][0])<=coordinates[0]<=max(pile.coordinates[0][0],pile.coordinates[1][0]) and \
                   min(pile.coordinates[0][1],pile.coordinates[1][1])<=coordinates[1]<=max(pile.coordinates[0][1],pile.coordinates[1][1]):
                    return pile.pileSize()
        return None
                
        
        
                
    

class Pile(object):
    __objects=None
    coordinates = None
    __que = None

    def __init__(self,coordinate1, coordinate2, *objects):
        #all piles are assumed to be rectangles
        self.__objects=[obj for obj in objects]
        self.__que=[]
        self.coordinates = (coordinate1, coordinate2)
    def update(self, robot, ao):
        self.__que.append(ao.robotsInAo.pop(ao.robotsInAo.index(robot)))
        try:
            if len(self.__que)>self.__objects[0]:
                obj=self.__objects.pop(0)#remove the object and get the number of needed robots
                for i in range(obj):
                    rob = self.__que.pop()#remove a robot from the que
                    rob.carrying = True #tell that robot it is carrying an object
                    rob.sendToCZ()#send that robot to the clear zone
                    ao.robotsInAO.append(rob)#add that robot to the list of the AO
            if len(self.__objects)==0:
                ao.removePile(self)#if the pile is empty, remove it from the list of piles
        except IndexError:
            ao.removePile(self)
    def totalRobots(self):
        return len(self.__que)
    def pileSize(self):
        return sum(self.__objects)#should change this so we also have  victims
    def dropRobots(self):
        for robot in self.__que:
            robot.carrying = True
            robot.sendToCZ()
            ao.robotsInAO.append(rob)
        self.__que=[]

class Robot(object):
    coordinates=None
    #Robots are assumed to be small enough to be well represented by a single coordinate
    __goal=None
    __task=None
    carrying=False
    __path=None
    __newpath=None
    ao=None
    __pathlength=0

    def __init__(self,ao, coordinates, dropPile, dropPath):
        self.coordinates=(int(coordinates[0]),int(coordinates[1]))
        self.__dropPile = dropPile
        self.__dropPath = dropPath
        self.ao= ao

    def sendToCZ(self):
        self.__goal = self.ao.CZ
        self.__task="Return"
        #choose the fastest known path to the CZ
        #maybe wan't to optimize on the path back too, but don't really feel like reversed path changing yet so maybe later
        #last coordinate was at the pile, so for simplicity assume it is still there
        pile=None
        for elem in self.ao.blackboard:
            if self.coordinates == elem[0]:
                pile=elem
                break
        minlen = min([path[0] for path in pile[3]])
        minlenpaths = [path for path in pile[3] if path[0]<= minlen+0.1]
        #choose a path of minimal length
        self.__path=minlenpaths[0]#all robots need to take the same one because they need to stay together
        self.pathindex=-1#since we're following backwards
        
#todo complete this
    def pickCoordinates(self, target, options):
        """
input: the floating point coordinates the robot wants to go to
output: integer coordinates in option that according to a combination of ceiling and floor correspond to target, or none if none exist
"""
        rounders=[math.floor, math.ceil]
        targets=[(fun1(target[0]),fun2(target[1])) for fun1 in rounders for fun2 in rounders]
        targets=[e for e in targets if e in options]
        if len(targets)=0: return None
        targets.sort(lambda a, b: cmp((a[0]-target[0])**2+(a[1]-target[1])**2, (b[0]-target[0])**2+(b[1]-target[1])**2))
        return targets[0]
    
    def update(self):
        if self.coordinates == self.ao.CZ:
            self.carrying = False
            self.__pathlength=0
            #assign a task and if needed a pile and a path
            rnum = random.random()
            if rnum>self.searchChoice():
                self.__task = "Search"
            else:
                self.__task = "Forage"
            #now, if it is assigned a forage task, pick a pile from the blackboard
            if self.__task=="Forage":
                #example of what a blackboard element may look like:
                #(coordinates, pheromone, treshold (k in the articles), [list of paths])
                #function from articles
                rnum = random.random()
                denominator = sum([(pile[1]+pile[2])**ao.l for pile in ao.blackboard])
                treshold = 0
                for pile in ao.blackboard:
                    treshold += (pile[1]+pile[2])**ao.l
                    if rnum <treshold:
                        self.__goal=pile[0]
                        #this is the pile it gets assigned too
                        #so now choose a path if available
                        if len(pile[3])>0:
                            rnum =random.random()#we don't need the previous rnum anymore since we'll now break from the loop
                            #now choosing from the known paths
                            #in the article it is done by pheromones but I'm now wondering why we shouldn't just do this by shortest known path
#todo: reconsider all of this
                            #OK, so instead of doing the pheromones for pathfinding, we'll let every robot pick either the shortest rout from the blackboard
                            #or find a new rout
                            #furthermore, to make short routs, instead of following the rout, we'll have the robot attempt to shorten it

                            #actually I now understand why you need the pheromone thing:
                            #the first found path gets optimized first so most newfound paths, when they're found, will not be shorter even though they leave more room for improvement
#todo: change all to pheromone based approach
                            if rnum >(0.25+(0.5*len(pile[3]))/(len(pile[3])+1)): # want to keep looking for new paths, but intensity should depend on number of known paths
#todo: think of a better distribution
                                #a path looks like (length (or pheromones), [coordinates])
                                minlen = min([path[0] for path in pile[3]])
                                minlenpaths = [path for path in pile[3] if path[0]<= minlen+0.1]#just in case more paths of minimal length exist (taking into account propperties of floats
                                self.__path=random.choice(minlenpaths)[-1]# want to keep using both since one might have more potential for updating than the other
                                #n.b. stochastics only yield good results for large number of robots
                                self.__newpath=[self.ao.CZ]
                                self.pathindex =0
                            else:
                                #seek for new path
                                self.__path=[]
                                self.__newpath=[self.ao.CZ]
#note to self: since now we're coming up with new paths for every robot, garbage collection should be performed on the blackboard
                        else:
                            self.__newpath=[self.ao.CZ]
                            self.__path=[]
                        break #we've found our pile and decided how to get there so break from the loop
                #basically, self.__task, self.__goal, self.__path, self.__pathlength and self.__newpath have been updated
        elif self.__task==None:
            #if robots start at a point different from the cz
            #probably need something better than this
#todo implement something better
            self.__task = "Search"
            
        movements= self.ao.getMovements(self.coordinates)#get the list of possible movements looks like [possiblemovements, reachablepiles]
        if self.__task == "Search":
            pass
#todo implement a good swarm-search algorithm
        elif self.__task == "Return":
            #simply follow the choosen path (choosen in sendToCZ()) backwards. No backwards optimization of the path at this point
#n.b. at this moment we assume no new obstacles are introduced during the simulation
#need to extend this part for if new obstacles are introduced
#basically need to do the same path finding algorithm as for the Forage when no path is selected except we need some way to keep the robots together (since they're pushing the same piece)
            if self.__path[self.pathindex-1] in movements[0]:
                coordinates = self.__path[self.pathindex-1]
                self.pathindex-=1
            else:
                pass
            
        elif self.__task == "Forage":
            if len(self.__path)>0:
                #find the next point to go to
                currentLength = len(self.__newpath)
                if self.__goal in movements[0]:
                    #we're there
                    self.__newpath.append(self.__goal)
                    self.__pathlength+=((self.coordinates[0]-self.__goal[0])**2 + (self.coordinates[1]-self.__goal[1])**2 )**.5
                    self.coordinates = self.__goal
                    #since self.__goal was a pile, after the update, the update() function of the ao will add this robot to the pile it's at
                    bbElement = None
                    for element in self.ao.blackboard:#find the corresponding pile in the blackboard
                        if element[0]==self.coordinates:
                            bbElement = element
                            break
#todo implement something to get rid of loops in the path (if there are any)
                    bbElement[-1].append((self.__pathlength, self.__newpath))
                    #do garbage collection over the blackboard element to prevent the blackboard from getting too large
                    minlen = min([path[0] for path in bbElement[-1]])
                    bbElement[-1] = [path for path in bbElement[-1] if path[0]<=1.2*minlen] #need to change this to pheromone based approach
                    #drop pheromones to pile
                    bbElement[1] = self.dropPile(self.ao.getPileSizeAt(self.__goal),*bbElement[1:3])
#todo change this to pheromone based approach
#todo consider implementing an algorithm that optimizes over the old path points
                else:
                    try:
                        proposedScale = ((self.coordinates[0]-self.__path[self.pathindex+2][0])**2 +(self.coordinates[1]-self.__path[self.pathindex+2][1])**2)**.5
                        proposedDirection = ((self.__path[self.pathindex+2][0]-self.coordinates[0])/proposedScale,(self.__path[self.pathindex+2][1]-self.coordinates[1])/proposedScale)
                        proposedCoordinate = pickCoordinates(((self.coordinates[0] + self.ao.speed*proposedDirection[0]),(self.coordinates[1] + self.ao.speed*proposedDirection[1])),movements[0])
                    except ZeroDivisionError:
                        proposedCoordinate = self.__path[self.pathindex+3]
                        self.pathindex+=1
                    self.pathindex+=1
                    if proposedCoordinate:#if it isn't None but some coordinates
#at this moment, robots might get into the wrong pile accidentally. Not sure if this is bad
                        self.__newpath.append(proposedCoordinate)
                        self.coordinates=proposedCoordinate
                        if self.__path[self.pathindex+2] in self.ao.getMovements(self.coordinates)[0]:#might want to reduce computation time by moving the getMovements
#todo: consider moving the getMovements step to other iteration since now we're computing twice
                            self.pathindex+=1
                    else:#the proposed move can't be executed
                        if self.__path[self.pathindex] in movements[0]:
                            self.__newpath.append(self.__path[self.pathindex])
                            self.coordinates = self.__path[self.pathindex]
                        elif self.path[self.pathindex-1] in movements[0]:#might need to think of something better than this (so that all the optimizations at parts of the path where
                            #everything went right don't get dismissed because of one point where it went wrong)
                            self.__newpath.append(self.__path[self.pathindex-1])
                            self.coordinates = self.__path[self.pathindex-1]
                            self.pathindex-=1
                        else:
                            raise Exception # might want to assume a new  obstacle is simply introduced and hence the old path has become invalid
                        #in this case we want to continue to searching for a new path
#todo: come up with an appropriate solution
                    self.pathlength+= ((self.__newpath[-1][0]-self.__newpath[-2][0])**2 + (self.__newpath[-1][1]-self.__newpath[-2][1])**2)**.5
#Problem: the proposed coordinates might be further away than the operation radius due to rounding off
#todo: fix this
#idea: maybe project to the boundary of the disc instead of using round?
            else:
                #the algorithm comes down to this:
                #try to move towards the goal
                #if that something is blocking that move goal:
                #  there is one minimal deflection to the left and one minimal deflection to the right, flip a coin between them
                #  except one of them means going back the same path, that's forbidden unless it's the only option
                goalScale = ((self.__goal[0]-self.coordinates[0])**2+(self.__goal[1]-self.coordinates[1])**2)**.5
                goalDirection = ((self.__goal[0]-self.coordinates[0])/goalScale,(self.__goal[1]-self.coordinates[1])/goalScale)
                goalCoordinate = (round(self.coordinates[0]+self.ao.speed*goalDirection[0]),round(self.coordinates[1]+self.ao.speed*goalDirection[1]))
                if goalCoordinate in movements[0]:
                    self.__newpath.append(goalCoordinate)
                    self.coordinates = goalCoordinate
                else:
                    #get the boundary of the circle with radius self.ao.speed around self.coordinates
                    circle = [(self.coordinates[0]+n,self.coordinates[1]+m) for n in range(-self.ao.speed, self.ao.speed+1) for m in range(-self.ao.speed, self.ao.speed+1)\
                              if n*n+m*m<=self.ao.speed**2 and (\
                        (abs(n)+1)*(abs(n)+1)+m*m >self.ao.speed**2 or
                        n*n+(abs(m)+1)*(abs(m)+1) >self.ao.speed**2)]
                    #take the intersection with movements[0]
                    choiceCircle = [point for point in circle if point in movements[0]]
                    
                    #now select from circle
#todo: implement this
                self.pathlength+=((self.__newpath[-1][0]-self.__newpath[-2][0])**2 + (self.__newpath[-1][1]-self.__newpath[-2][1])**2)**.5
#todo: implement this
#todo implement loop cutting at the moment a path is stored
    def searchChoice():
        """probability of a robot going for foraging"""
        #depending on the number of robots, size of the ao and number of known piles
        #this is just a place holder. The final choice will be based on USE decisions

        #for now we assume that there should be approximately 10 robots for every pile
        return min((10.*len(ao.blackboard))/ao.totalRobots,1) #although the min(...,1) doesn't really have any effect due to implementation

Path updating idea

For reducing path length the following idea is used (a bit more thoroughly implemented above, but it comes down to the following concept shown in mathematica code) n.b. this is just a rough sketch to see the idea at work. It isn't robust (e.g. it can't handle loops very well in this form)

points = {{{0,0}, {0, -1}, {0, -2}, {1, -2}, {2, -2}, {3, -2}, {4, -2}, {4,-1}, {4, 0}, {4, 1}, {4, 2}, {3, 2}, {2, 2}, {1, 2}, {0, 2}, {0,3}, {0, 4}, {1, 4}, {2, 4}, {3, 4}, {4, 4}}}
While[Length[points] < 25,
 previousPath = points[[Length[points]]];
 newPath = {{0,0}};
 While[newPath[[Length[newPath]]] != {4, 4},
  If[Norm[newPath[[Length[newPath]]] - {4, 4}] <= 1,
   AppendTo[newPath, {4, 4}];,
   AppendTo[newPath, 
    N[newPath[[
       Length[newPath]]] + (previousPath[[Length[newPath] + 2]] - 
         newPath[[Length[newPath]]])/
       Norm[(previousPath[[Length[newPath] + 2]] - 
          newPath[[Length[newPath]]])]
     ]
    ]
   ]
  ];
 AppendTo[points, newPath]]
Manipulate[
 ListPlot[points[[i]], Joined -> True, Mesh -> All], {i, 1, 
  Length[points], 1}]

Pathshortningidea.gif


We've worked out the path updating idea a bit further and illustrated it in the following python code (it uses pygame), however we've come to the conclusion that a more graph based approach would yield better results and will work towards that.

"""more investigation on the path simplification algorithm"""
import pygame
from pygame.locals import *
import math
import os

def distance(a,b):
    return ((a[0]-b[0])**2+(a[1]-b[1])**2)**.5

class demo(object):
    speed=6

    def __init__(self, speed, size, iterations, path, obstacles, waitingtime=100):
        self.speed=speed
        self.size=size
        self.pathlist=[path]
        self.iterations=iterations
        self.obstacles=obstacles#leave this out for now
        self.waitingtime=waitingtime
        self.simplify()
        self.run()

    def pickCoordinates(self, target, options):
        rounders=[math.floor, math.ceil]
        targets=[(fun1(target[0]),fun2(target[1])) for fun1 in rounders for fun2 in rounders]
        targets=[e for e in targets if e in options]
        if len(targets)==0: return None
        targets.sort(lambda a, b: cmp((a[0]-target[0])**2+(a[1]-target[1])**2, (b[0]-target[0])**2+(b[1]-target[1])**2))
        return targets[0]
    def pickDirection(self, coordinates, target):#bad name but who cares
        denom= distance(coordinates, target)
        if denom==0: return None
        direction= ( coordinates[0] + self.speed *(target[0]-coordinates[0])/denom,
                     coordinates[1] + self.speed *(target[1]-coordinates[1])/denom)
        return direction
    def getMovements(self, coordinates):
        freeSpace=[(coordinates[0]+n,coordinates[1]+m) for n in range(-self.speed,self.speed+1) for m in range(-self.speed, self.speed+1) if n*n+m*m<=self.speed*self.speed]
        #circle around the point
        for obstacle in self.obstacles:
            if min(obstacle[0][0],obstacle[1][0])<=coord[0]<=max(obstacle[0][0],obstacle[1][0]) and  \
               min(obstacle[0][1],obstacle[1][1])<=coord[1]<=max(obstacle[0][1],obstacle[1][1]):
                freeSpace.remove(coord)
        return freeSpace
        
    def simplify(self):
        begin=self.pathlist[0][0]
        end=self.pathlist[0][-1]
        for i in range(self.iterations):
            newpath=[begin]
            index=0
            while newpath[-1]!=end:
                try:
                    if distance(newpath[-1], self.pathlist[-1][index+2])<=self.speed:
                        index+=1
                except IndexError:
                    if distance(newpath[-1], end)>self.speed:
                        print "got the index error, "+str(distance(newpath[-1],self.pathlist[-1][index+1]))
                    pass
                if distance(newpath[-1],end)<=self.speed:
                    #need something better than this for when obstacles are introduced
                    newpath.append(end)
                elif distance(newpath[-1],end)<=2.1*self.speed:
                    #really really need something better than this for when obstacles are introduced
                    movements = self.getMovements(newpath[-1])
                    direction = self.pickDirection(newpath[-1], end)
                    newpoint = self.pickCoordinates(direction, movements)
                    if newpoint:
                        newpath.append(newpoint)
                    else:
                        dindex=2
                        while not newpoint and dindex>-3:
                            try:
                                direction = self.pickDirection(newpath[-1],self.pathlist[-1][index+dindex])
                                newpoint = self.pickCoordinates(direction, movements)
                            except IndexError:
                                pass
                            dindex -=1
                        if not newpoint:
                            print "I don't get it anymore, "+ str(index)
                            self.pathlist.append(newpath)
                            raise Exception
                        newpath.append(newpoint)
                else:
                    movements = self.getMovements(newpath[-1])
                    direction = self.pickDirection(newpath[-1], self.pathlist[-1][index+2])
                    if direction:
                        newpoint = self.pickCoordinates(direction, movements)
                        #need to change this when obstacles are introduced
                        newpath.append(newpoint)
                        index+=1
                    else:
                        index+=2
            self.pathlist.append(newpath)
    def run(self):
        running = True
        #before initialising object, furst run pygame.init()
        self.displaysurface = pygame.display.set_mode(self.size, pygame.HWSURFACE | pygame.DOUBLEBUF)
        path= os.path.dirname(__file__)
        pointsurface = pygame.image.load(os.path.join(path, "blp.bmp")).convert()
        #
        while running:
            if pygame.QUIT in pygame.event.get()>0:
                running = False
            for path in self.pathlist:
                self.displaysurface.fill((0,0,0))
                for point in path:
                    self.displaysurface.blit(pointsurface, point)
                pygame.display.flip()
                pygame.time.wait(self.waitingtime)
        pygame.quit()
                        
                        



#all the below is old

def simplifyPath(path, iterations):
    pathlist=[path]
    begin=path[0]
    end=path[-1]
    for i in range(iterations):
        newpath=[begin]
        index=0
        while newpath[-1]!=end:
            #if distance(newpath[-1],pathlist[-1][index+1])>1: print distance(newpath[-1],pathlist[-1][index+1])
            #the problem is in the rounding off
            try:
                if distance(newpath[-1], pathlist[-1][index+2])<=1:
                    index+=1
                    #print "did it at index "+str(index) +" with pathlist length "+str(len(pathlist))
            except IndexError:
                if distance(newpath[-1], end)>1:
                    print "got the index error, "+str(distance(newpath[-1],pathlist[-1][index+1]))
                pass
            if distance(newpath[-1], end)<=1:
                newpath.append(end)
            elif distance(newpath[-1], end)<=2:
                denom=distance(newpath[-1],end)
                newpoint = (round(newpath[-1][0] + (end[0]-newpath[-1][0])/denom),round(newpath[-1][1] + (end[1]-newpath[-1][1])/denom))
                newpath.append(newpoint)
                index+=1 #not necessary 
            else:
                denom=((newpath[-1][0]-pathlist[-1][index+2][0])**2 +\
                       (newpath[-1][1]-pathlist[-1][index+2][1])**2 )**.5
                if denom!=0:
                    newpoint = (round(newpath[-1][0] + \
                                      (pathlist[-1][index+2][0] - newpath[-1][0])/denom,1),
                                round(newpath[-1][1] + \
                                      (pathlist[-1][index+2][1] - newpath[-1][1])/denom,1))
                    newpath.append(newpoint)
                    index+=1
                else:
                    index+=2
        pathlist.append(newpath)
    return pathlist

def mathematify(pathlist):
    return str(pathlist).replace("[","{").replace("(","{").replace("]","}").replace(")","}")
    
def givepath(start, n, direction, speed):
    scale = distance(direction, (0,0))
    scaleddirection = (speed*direction[0]/scale, speed*direction[1]/scale)
    path=[start]
    while len(path)<=n:
        path.append((round(path[-1][0]+scaleddirection[0],1), round(path[-1][1]+scaleddirection[1],1)))
    return path

if __name__=="__main__":
    pygame.init()
    startingpath = givepath((0,0),20,(0,1),20)
    startingpath += givepath(startingpath[-1],30,(1,0),20)
    #startingpath += givepath(startingpath[-1],20,(0,-1),10)
    demonstration = demo(20,(600,400), 150, startingpath, [], 50)

Issues

A downside to all of this is that it relies heavily on a coordinate system, so without that, it might be significantly harder (although much of the pheromone stuff would work without a coordinate system in the case of physical pheromones, and there seem to be some papers around that use some sort of local blackboard for pheromones that does not depend on coordinates).

Furthermore, the ant colony algorithms are essentially graph algorithms, so we will opt for a heuristic algorithm instead.