PRE2019 4 Group9: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 131: Line 131:
   <td>Bengt Frielinck (1269593)</td>
   <td>Bengt Frielinck (1269593)</td>
   <td>8</td>
   <td>8</td>
   <td>Intro lecture[1h] Meetings [3h], Finding/Researching different topics [3h], Writing[1h]</td>
   <td>Intro lecture[1h] Meetings [3h], Finding/Researching different topics [4h]</td>
  </tr>
  </tr>
<tr>
<tr>
Line 164: Line 164:
  <tr>
  <tr>
   <td>Bengt Frielinck (1269593)</td>
   <td>Bengt Frielinck (1269593)</td>
   <td></td>
   <td>5</td>
   <td></td>
   <td>Communications[30m],Researching[2h], Writing requirements and revision[2h30m] </td>
  </tr>
  </tr>
<tr>
<tr>

Revision as of 01:23, 30 April 2020

Group members

Name Student ID Department
Pim Claessen 0993712 Applied Physics
Bengt Frielinck 1269593 Automotive
Matthijs Marinus 1000921 Software Science
Max Opperman 1232427 Computer Science and Engineering
Thomas Willems 1022753 Software Science

Problem Statement

A concept design for a flexible, multipurpose, active exoskeleton for use by emergency services.

User Group

We will be designing our exoskeleton for use by emergency responders. In most situations these will be firefighters. However we will keep other use cases in mind for example for police officers or search and recue operations. Firefighters have an incredibly difficult and dangerous job. Typical firefighter emergency scenario’s include medical emergencies, vehicle accidents, building collapse and of course putting out fires among others. These are difficult, strenuous activities often carried out in very adversarial conditions. It is then not surprising that one of the mayor causes of death for firefighters is overexertion, being struck by objects or getting caught/trapped [1][2]. Our exoskeleton should help alleviate this group by reducing the amount of physical exertion firefighters have to undergo while performing our jobs. We also hope the exoskeleton can provide the firefighters with the extra boost in strength to free themselves or people they are helping in dangerous situation. The exoskeleton should also serve as a type of shield by taking some of the blows of various objects hitting the firemen since the exoskeleton will cover a large part of their bodies. It will also help them carry people much easier out of dangerous situations, or move heavy objects trapping people. You could also think about tall buildings which are on fire. Firemen have to carry equipment up a large set of stairs. Currently there is already an exoskeleton design who helps firemen carry up to 40kg of weight making this task much easier and faster [3]. It should also be applicable in traffic accidents where victims are stuck in folded cars. Often firemen are called in these scenarios to cut open the car. This is a difficult process and having an exoskeleton to bend or break critical parts should be a tremendous help.

Another great user group are search and rescue workers. After natural disaster these people are deployed to find and help people who are in danger. This usually involves freeing people from under a large pile of debris from collapsed buildings or other items. These operations usually take a long time and a lot of equipment. [4] Shows a company who has developed and exoskelton already for this case allowing the user to have extra power to move debris or objects for a long period of time under harsh conditions. These are defenitly some of the features we want to equip or exoskeleton with.

Police officers could also benefit from using this type of technoglogy. As explained in [5] police officers often have to carry heavy equipment like gun vests or gun belts with them. This coupled with long standing hours causes a lot of police offers to eventually develop health problems in their back or legs causing them to become unemployed. If they were to carry and exoskelton during long work hours we could alleviate some of this repetetive strain.

State of the Art

We probably have to pull different innovations from all kinds of different types of exoskeletons. From different parts of the body to different types of exoskeletons (varying goals). [6] shows that currently a problem many exoskeletons face is the tradeoff between rigidness and agility. Often a more rigid skeleton can provide more stability/force but in practice is quite cumbersome. The exoskeleton in [3] is an example of an exoskeleton designed for firemen. It provides support for the back and shoulders and is a good example of something we would like to achieve, alleviate some of the heavy work. [7] Discuses some positive/negatives of a back support exoskeleton mostly used in treatment of SCI (spinal cord injury). Interesting part of this article is that it also discusses some of the dangers involved in using an exoskeleton like bone fractures and skin shearing. Furthermore it also discuses how tailor made most exoskeletons are and that most take a lot of practice to get used to. The last problem it brings up is that they also take of lot of time to get into. These are all problems we are going to have to think about in our project.

[5] Talks about the impact exoskeletons could have on police work. A lot of injuries over the long term are caused by repetitive strain from carrying gun belt, bullet resistant vests and long periods of standing. As is the case for firemen, who also carry a lot of gear and are likely to have to stand for long periods of time, our ES should alleviate this repetitive strain keeping the emergency responders in better health for a longer time. [4] Displays another great possible use case exoskeletons, some of which we want to replicate in our model. It involves and exoskeleton designed for dangerous and heavy search and rescue work under extreme conditions. It allows the user to carry heavy object with greater ease and for longer periods of time helping with moving debris or heavy objects. This is also a functionality we want to have.

Requirements

Within the design of an exoskeleton, multiple required features should be present, depending on the user of the exoskeleton. As the user of the exoskeleton will be emergency services the exoskeleton should be flexible so as to not restrict the user because emergency responders need to be able to move in tight spots. The device should also be powered, this will allow the user to lift more than physically possible otherwise. To not restrict the movement, the exoskeleton should not just be flexible, but also lightweight. A lightweight and flexible design would help with the requirement of being able to operate the exoskeleton without power. It is important that the exoskeleton an be operated without power, as otherwise, the user could be put in a precarious situation if the device were to suddenly malfunction or power off. As the exoskeleton is going to be used by emergency services, the device should be transportable in a car used by the responders. Also, the exoskeleton has to be put on in a reasonable time, the exoskeleton cannot take more than 10 minutes to be put on. The final requirement is that a user with the exoskeleton should be able to lift x times as much, then a user without the exoskeleton, as the benefits from the exoskeleton should outway any negatives that a device such as this brings.

Approach, milestones & deliverables

Approach

Our current goal for the end deliverable is a model for an exoskeleton that helps emergency services. Due to the COVID-19 situation, the process of the actual building of the model will be difficult in the given time span. The aim is to have a full-body exoskeleton that has both a passive and active mode to preserve battery. We want to achieve this by reaching the milestones as mentioned below. In short, we want to do research on what has already been achieved in the field of exoskeletons and how they operate. After that, we want to start designing our model and elaborate on our design choices in a report. This model will be made using CAD software which we yet have to determine. Since we have plans for a full-body exoskeleton we will distribute this work amongst two of our group members. The rest of the group will work more on the research and design choices of the project. If we find out that this distribution of work is not working out for us, we will alter it accordingly.


Milestones

Week Milestone
Week 1 Research on possible projects and prepare for the first meeting
Week 2 Summarize papers & more research

First design decisions

Week 3 Learn CAD

Elaborate research on design decisions

Week 4 First CAD concept designs

Finish research & write the report

Week 5 Finalize design

Elaborate design sections in the report

Week 6 Finalize CAD models

Finish design sections in the report

Week 7 Finish video presentation

Final report on the wiki page

Week 8

Video presentation and peer review

Deliverables

Our deliverables will be:

  • A concept design for a flexible, multipurpose exoskeleton that uses passive and active technology for use by emergency services.
  • A report on the wiki page containing a detailed description of the design as well as all of the research, findings, and results of the project.
  • A video presentation presenting our research, findings, and design.


Task distributions

Bengt and Matthijs will focus on learning CAD and visualizing our designs. As mentioned before, there will be somebody (Max) who can help with this if there are too few group members assigned to this task. Max, Pim, and Thomas will do research on how the exoskeleton will be made. This consists of e.g. the materials, electronic circuits, and passive mechanisms.


Logbook



Week 1:

Name (ID) Hours Work done
Matthijs Marinus (1000921) 8 Intro lecture[1h] Meetings [3h], Finding/Researching different topics [4h]
Bengt Frielinck (1269593) 8 Intro lecture[1h] Meetings [3h], Finding/Researching different topics [4h]
Pim Claessen (0993712)
Max Opperman (1232427) 7 Intro lecture[1] Meetings [3h], Finding/Researching different topics [3h]
Thomas Willems (1022753) 7 Intro lecture[1] Meetings [3h], Finding/Researching different topics [3h]

Week 2:

Name (ID) Hours Work done
Matthijs Marinus (1000921) 5 Meetings[30m], Researching new topic for user groups [2h], Writing user groups/updating wiki page[2h30m]
Bengt Frielinck (1269593) 5 Communications[30m],Researching[2h], Writing requirements and revision[2h30m]
Pim Claessen (0993712)
Max Opperman (1232427) 5 Meetings[2h], Writing Approach, Milestones and Deliverables/updating wiki page[3h]
Thomas Willems (1022753) 4 Meetings[2h], Writing Approach, Milestones and Deliverables/updating wiki page[2h]

References

  1. [1]: Firefighter fatalities in the United States - Firefighter death by cause and nature of injury, National Fire Protection Agency. (June, 2019) Retrieved April 27, 2020
  2. [2]: Summary incident report, US fire administration (21 April, 2020) Retrieved April 27, 2020
  3. 3.0 3.1 [3]: Auberon Pneumatic Exoskeleton, Trigen Automotive. () Retrieved April 27, 2020
  4. 4.0 4.1 [4]: Power Suit for Disaster Relief: Robot Exoskeleton From German Bionic Supports Rescue Teams During Challenging Missions, PR Newswire. (19 December 2018) Retrieved April 27, 2020
  5. 5.0 5.1 [5]: Exoskeleton Technology’s Impact on Policing, Journal of California law enforcement. (February 2017) Retrieved April 27, 2020
  6. [6]: Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends, ResearchGate . (August 2019) Retrieved April 27, 2020
  7. [7]: Robotic Exoskeletons: The current pros and cons, World Journal of Orthopedics. (18 September 2019) Retrieved April 27, 2020