Embedded Motion Control 2013/Goal: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
 
(13 intermediate revisions by 4 users not shown)
Line 11: Line 11:
* the robot can be actuated by sending information to the '''base controller'''
* the robot can be actuated by sending information to the '''base controller'''
* during the final contest, it is highly imperative that the PICO robot refrains from colliding with the walls in the maze. '''Colliding with the walls will result in severe time-penalties.'''
* during the final contest, it is highly imperative that the PICO robot refrains from colliding with the walls in the maze. '''Colliding with the walls will result in severe time-penalties.'''
* the walls of the maze will contain several types of pointers to the exit, which can potentially help PICO to speed up execution of the task.
* the walls of the maze will contain several types of pointers to the exit, which can potentially help PICO to speed up execution of the task [http://cstwiki.wtb.tue.nl/images/Red_arrow.pdf Click here for a pdf file containing the arrow we will use]. We also captured PICO's camera topics in a [http://roboticssrv.wtb.tue.nl/svn/emc/2013/general/data/2013-10-08-15-35-04.bag bag file] while the robot was looking at the arrow. You can play this bag file as follows:<pre>rosbag play 2013-10-08-15-35-04.bag</pre> The topics ''/pico/camera'' and ''/pico/camera_info'' should then become available. For example, while playing the bag file, use <pre>rosrun image_view image_view image:=/pico/camera</pre> to view the camera images.


<!--
<!--
[http://cstwiki.wtb.tue.nl/images/Arrow.pdf Click here for a pdf file containing the arrow we will use]. Also, we have uploaded a [http://cstwiki.wtb.tue.nl/images/Arrows_emc.zip zip file] with multiple images of these arrows captured on the real PICO robot. Furthemore, we captured PICO's camera topics in a [https://amigo.wtb.tue.nl/svn/amigo/data/recorded/bags/pico_camera_arrow.bag bag file] while the robot was looking at the arrow. You can play this bag file as follows:<pre>rosbag play pico_camera_arrow.bag</pre> The topics ''/robot/body/head/camera/camera_info'' and ''/robot/body/head/camera/image_raw'' should then become available. For example, while playing the bag file, use <pre>rosrun image_view image_view image:=/robot/body/head/camera/image_raw</pre> to view the camera images.
Also, we have uploaded a [http://cstwiki.wtb.tue.nl/images/Arrows_emc.zip zip file] with multiple images of these arrows captured on the real PICO robot.
-->
-->


== Corridor Competition ==
== Corridor Competition ==


An intermediate review will be held on September 25th, during the corridor competition. During this challenge the students have to let the robot drive through a corridor and then take the first exit. The precise location of this exit will not be given in advance. Some facts:
An intermediate review will be held on May 16th, during the corridor competition. During this challenge the students have to let the robot drive through a corridor and then take the first exit. The precise location of this exit will not be given in advance. Some facts:


{| class="wikitable"
{| class="wikitable"
Line 29: Line 29:
* It is not known beforehand if the opposing end wall (on the far end) will be open or closed
* It is not known beforehand if the opposing end wall (on the far end) will be open or closed
* The walls are approximately parallel to each other
* The walls are approximately parallel to each other
** '''Note:'''the walls might not be perfectly straight
** '''Note:''' the walls might not be perfectly straight
* The distance between the walls is not known in advance, but will be reasonable (somewhere between 0.5 and 1.5 meters)
* The distance between the walls is not known in advance, but will be reasonable (somewhere between 0.5 and 1.5 meters).
** The distance between the walls will be fairly constant throughout the corridor, 'fairly' meaning that we build the corridor by hand, and the distance may change a little along the corridor.
* PICO will start with its laser range finder between the walls
* PICO will start with its laser range finder between the walls
* PICO will be '''approximately''' facing the end of the corridor. (Notice: '''approximately''', so don't just drive forward for ''n'' seconds!)
* PICO will be '''approximately''' facing the end of the corridor. (Notice: '''approximately''', so don't just drive forward for ''n'' seconds!)
* You have finished the assignment if PICO did not drive into walls, took the correct turn, the castor wheels are outside the corridor '''and''' the robot has stopped moving
* At the exit, the finish line is located '''approximately''' 30 cm from the side of the corridor (Notice: '''approximately''', so don't just drive forward for ''30'' cm!). The walls that can be used to align PICO will be a little bit longer.
* You have finished the assignment if PICO did not drive into walls, took the correct turn, the castor wheels are across the finish line.
* '''Hitting the wall will result in 0 points!'''
* '''Hitting the wall will result in 0 points!'''
|}
|}


During the final contest, the groups are expected to give a short (5 minute) presentation about their progress and design decisions. During the corridor competition '''no''' presentation is expected.
During the final contest, the groups are expected to give a short (5 minute) presentation about their progress and design decisions. During the corridor competition '''no''' presentation is expected.

Latest revision as of 12:07, 25 April 2014

The goal of the assignment is to get the real-time concepts in embedded software design operational.

The concrete task that has to be solved is to let the PICO robot find his way out of a maze. The final demonstration by each participating group of 4-5 students will be performed during a contest, the winner of which is the group that exits the maze in the shortest amount of time. To prepare for this competition the following guidelines have to be considered:

  • to test with PICO and to prepare for the final contest, a simulator will be made available that mimics the in and outputs to the real robot. Specifics of this simulator will be presented in the first lecture on September 4th
  • the maze of the final competition will be constructed just before the competition. The maze presented in the simulator is therefore different from the real one used in the final contest.
  • both on the real and simulated PICO robot, three sources of sensor information will be available to perceive the environment and to derive the state of the robot:
    • laserdata provided by the forward pointing laser scanner,
    • images captured by the monocular camera,
    • odometry provided by the base controller
  • the robot can be actuated by sending information to the base controller
  • during the final contest, it is highly imperative that the PICO robot refrains from colliding with the walls in the maze. Colliding with the walls will result in severe time-penalties.
  • the walls of the maze will contain several types of pointers to the exit, which can potentially help PICO to speed up execution of the task Click here for a pdf file containing the arrow we will use. We also captured PICO's camera topics in a bag file while the robot was looking at the arrow. You can play this bag file as follows:
    rosbag play 2013-10-08-15-35-04.bag
    The topics /pico/camera and /pico/camera_info should then become available. For example, while playing the bag file, use
    rosrun image_view image_view image:=/pico/camera
    to view the camera images.


Corridor Competition

An intermediate review will be held on May 16th, during the corridor competition. During this challenge the students have to let the robot drive through a corridor and then take the first exit. The precise location of this exit will not be given in advance. Some facts:

Corridor example.jpg
  • The exit can be either left or right
  • It is not known beforehand how far the exit is located from the start (somewhere between 1 and 10 meters)
  • It is not known beforehand if the opposing end wall (on the far end) will be open or closed
  • The walls are approximately parallel to each other
    • Note: the walls might not be perfectly straight
  • The distance between the walls is not known in advance, but will be reasonable (somewhere between 0.5 and 1.5 meters).
    • The distance between the walls will be fairly constant throughout the corridor, 'fairly' meaning that we build the corridor by hand, and the distance may change a little along the corridor.
  • PICO will start with its laser range finder between the walls
  • PICO will be approximately facing the end of the corridor. (Notice: approximately, so don't just drive forward for n seconds!)
  • At the exit, the finish line is located approximately 30 cm from the side of the corridor (Notice: approximately, so don't just drive forward for 30 cm!). The walls that can be used to align PICO will be a little bit longer.
  • You have finished the assignment if PICO did not drive into walls, took the correct turn, the castor wheels are across the finish line.
  • Hitting the wall will result in 0 points!

During the final contest, the groups are expected to give a short (5 minute) presentation about their progress and design decisions. During the corridor competition no presentation is expected.