PRE2018 3 Group12: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
Line 23: Line 23:
== Users ==
== Users ==
The users we are designing the technology for, are the visually impaired. People with a visual disability often need aids to get through their daily life. For a blind or partially blind person, the simplest tasks can be hard to complete. While there are existing tools, such as guiding dogs and white canes, these are not always sufficient.
The users we are designing the technology for, are the visually impaired. People with a visual disability often need aids to get through their daily life. For a blind or partially blind person, the simplest tasks can be hard to complete. While there are existing tools, such as guiding dogs and white canes, these are not always sufficient.
Generally stated, the most important requirement is that the benefits of the technology outweigh the negative properties, and that it is a better alternative to already existing aids. It can be better in terms of cost, usability, etc. The benefits mainly come down to support for their disability. Negative factors can be the costs, the usability, etc.
 
The most important requirement is the technology offering a significant improvement over existing aids, and that the benefits of the technology outweigh the negative properties:
 
It can be better in terms of cost, usability, etc. The benefits mainly come down to support for their disability. Negative factors can be the costs, meaning that it is cheaper, or in usability, meaning that it is easier to use, or provides better assistance.
 
The advantages of the technology also have to outweigh the disadvantages. For example, if the technology is extremely expensive to produce, it may not be the best solution for many users.


== Different designs ==  
== Different designs ==  

Revision as of 15:05, 8 February 2019

<link rel="shortcut icon" href="https://www.tue.nl/favicon-64.ico" type="image/x-icon"> <link rel=http://cstwiki.wtb.tue.nl/index.php?title=PRE2018_3_Group4&action=edit"stylesheet" type="text/css" href="theme.css">

Group Members

Name Study Student ID
Harm van den Dungen Electrical Engineering 1018118
Nol Moonen Software Science 1003159
Johan van Poppel Software Science 0997566
Maarten Flippo Software Science 1006482


Users

The users we are designing the technology for, are the visually impaired. People with a visual disability often need aids to get through their daily life. For a blind or partially blind person, the simplest tasks can be hard to complete. While there are existing tools, such as guiding dogs and white canes, these are not always sufficient.

The most important requirement is the technology offering a significant improvement over existing aids, and that the benefits of the technology outweigh the negative properties:

It can be better in terms of cost, usability, etc. The benefits mainly come down to support for their disability. Negative factors can be the costs, meaning that it is cheaper, or in usability, meaning that it is easier to use, or provides better assistance.

The advantages of the technology also have to outweigh the disadvantages. For example, if the technology is extremely expensive to produce, it may not be the best solution for many users.

Different designs

gloves

shoes

Bril?

Geluid toevoegen zoals vleermuizen? -> Doppler effect gebruiken voor bewegingen. -> dit kan gedaan worden met icm radar -> groot bereik

Deliverables

A prototype that aids blind people roam around areas, that are unknown to them. This prototype is based on the design of last year[1]. From this design, a new design was made that tries to improve on the issues the previous design faced. Additionally, a wiki will be made that helps with giving additional information about the protoype, such as costs, components and it gives some backstory of the subject. Finally, a presentation is made regarding the final design and prototype.

Requirements

Approach

To build this prototype designed for the users, in this case, the visually impaired, first there has to be known what the actual problem is. To acquire this knowledge, information about problem is gathered. Afterwards, using this problem, information about the state-of-the-art of most notably technologies for visually impaired, radar-sensors and radar-Doppler-sensors could be gathered. Combining all the information will be used to make preliminary design that fills the needs of the users. After the preliminary design is finished, building the prototype can be started. During the making of the design and building the prototype, it is probable that some things might not go as planned and it will be necessary to go back steps, to make an improvement on the design in the end. When the prototype is finished, it is tweaked to perform as optimal as possible using several tests. Finally, everything will be documented in the wiki.

Milestones

  • Completing the design of the prototype
  • Finish building the prototype
  • Prototype is fully debugged and all components work as intended
  • Prototype follows requirements
    • 50%
    • 75%
    • 100%

references 1

[2] [3] [4] [5] [6] [7] [8]


References

  1. Boekhorst, B, te. Kruithof, E. Cloudt, Stefan. Cloudt, Eline. Kamperman, T. (2017). Robots Everywhere PRE2017 3 Groep13. http://cstwiki.wtb.tue.nl/index.php?title=PRE2017_3_Groep13
  2. Pereira, A., Nunes, N., Vieira, D., Costa, N., Fernandes, H. & Barroso, J. (2015). Blind Guide: An ultrasound sensor-based body area network for guiding blind people. Procedia Computer Science, 67, 403–408. https://doi.org/10.1016/j.procs.2015.09.285
  3. Al-Mosawi, Ali. (2012). Using ultrasonic sensor for blind and deaf persons combines voice alert and vibration properties. Research Journal of Recent Sciences. 1. https://www.researchgate.net/publication/235769070_Using_ultrasonic_sensor_for_blind_and_deaf_persons_combines_voice_alert_and_vibration_properties
  4. T. Ifukube, T. Sasaki and C. Peng, "A blind mobility aid modeled after echolocation of bats," in IEEE Transactions on Biomedical Engineering, vol. 38, no. 5, pp. 461-465, May 1991. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=81565&isnumber=2674
  5. Bousbia-Salah, M., Bettayeb, M. & Larbi, A. J Intell Robot Syst (2011) 64: 387. https://doi.org/10.1007/s10846-011-9555-7
  6. Bousbia-Salah M., Fezari M. (2007) A Navigation Tool for Blind People. In: Sobh T. (eds) Innovations and Advanced Techniques in Computer and Information Sciences and Engineering. Springer, Dordrecht. https://link.springer.com/chapter/10.1007%2F978-1-4020-6268-1_59
  7. P. Mihajlik, M. Guttermuth, K. Seres and P. Tatai, "DSP-based ultrasonic navigation aid for the blind," IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188), Budapest, 2001, pp. 1535-1540 vol.3. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=929462&isnumber=20096
  8. L. Dunai, G. P. Fajarnes, V. S. Praderas, B. D. Garcia and I. L. Lengua, "Real-time assistance prototype — A new navigation aid for blind people," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 1173-1178. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5675535&isnumber=5674827