Summary Chiel van der Laan: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:


'''Pedestrian detection Large-Field-Of-View'''
'''Pedestrian detection Large-Field-Of-View'''
Since the mobility scooter will be in crowed areas, such at malls a fast method to scan for pedestrians is important. For autonomous cars the pedestrian detection can be done with a Large-Field-Of-View (LFOV) deep network, that uses machine learning to determine the location of pedestrians in an image. [https://doi.org/10.1109/icra.2015.7139256 <nowiki>[4]</nowiki>] The LFOV method divides the image in a grid of multiple images and can scan them simultaneously for pedestrians. This method is more successful because it can detect pedestrian at a speed of 280 ms per image, compared to prior methods which took seconds.  
Since the mobility scooter will be in crowed areas, such at malls a fast method to scan for pedestrians is important. For autonomous cars the pedestrian detection can be done with a Large-Field-Of-View (LFOV) deep network, that uses machine learning to determine the location of pedestrians in an image. [https://doi.org/10.1109/icra.2015.7139256 <nowiki>[4]</nowiki>] The LFOV method divides the image in a grid of multiple images and can scan them simultaneously for pedestrians. This method is more successful because it can detect pedestrian at a speed of 280 ms per image, compared to prior methods which took seconds.  


'''Navigation in the dark'''
'''Navigation in the dark'''
For driving in the dark during night time normal cameras would not work. Infrared (IR) or thermal imaging can be a solution for this problem. Since pedestrian, cars and all motorized vehicles have a heat signature. [https://doi.org/10.1109/mva.2015.7153177 <nowiki>[5]</nowiki>] In combination with a LIDAR system to detect object that don’t have a heat signature, the scooter should be able to navigate the environment.
For driving in the dark during night time normal cameras would not work. Infrared (IR) or thermal imaging can be a solution for this problem. Since pedestrian, cars and all motorized vehicles have a heat signature. [https://doi.org/10.1109/mva.2015.7153177 <nowiki>[5]</nowiki>] In combination with a LIDAR system to detect object that don’t have a heat signature, the scooter should be able to navigate the environment.

Revision as of 14:58, 18 February 2018

Figure 1: Autonomous navigation with synthetic virtual LIDAR. Images on the right from top to bottom correspond to visual validation of localization repeatability from checkpoint A to E.[2]

The problem of mapping can be solved by constructing a 2D scan with a LIDAR system from a 3D environment. [1] After which it the localization can be done in the 2D mapped environment for lower processing power.[2] An example of the visual validation of localization can be seen in figure 1. The LIDAR system for the mapping and localization has to be able to scan a large area at once and has to be high on top of the mobility scooter because of this.


The more complex dynamic environment that has to be avoid pedestrians and other (smaller) moving vehicles can be done by a second LIDAR system lower to the ground. An example of the components of the mobility scooter can be seen in figure 2. In this example two external lead-acid batteries rated at 12 V and 22 Ah each are connected in series, to form an auxiliary 24 V power supply. (In the example used the mobility scooter is shared between multiple users, which is something we could explore too, as this may reduce the cost of being able to ride in an autonomous mobility scooter.)

Figure 2: Hardware overview scooter. [3]

Pedestrian detection Large-Field-Of-View

Since the mobility scooter will be in crowed areas, such at malls a fast method to scan for pedestrians is important. For autonomous cars the pedestrian detection can be done with a Large-Field-Of-View (LFOV) deep network, that uses machine learning to determine the location of pedestrians in an image. [4] The LFOV method divides the image in a grid of multiple images and can scan them simultaneously for pedestrians. This method is more successful because it can detect pedestrian at a speed of 280 ms per image, compared to prior methods which took seconds.

Navigation in the dark

For driving in the dark during night time normal cameras would not work. Infrared (IR) or thermal imaging can be a solution for this problem. Since pedestrian, cars and all motorized vehicles have a heat signature. [5] In combination with a LIDAR system to detect object that don’t have a heat signature, the scooter should be able to navigate the environment.