PRE2016 3 Groep1: Difference between revisions

From Control Systems Technology Group
Jump to navigation Jump to search
No edit summary
No edit summary
Line 77: Line 77:
Naïo Technologies is a company that produces different types of weeding robots. They are suitable for different kinds of users and crops. The one thing that the different robots have in common is that they remove weeds by hoeing. This lets the robots stand out to the opposing companies and robots. The most imporant robots of Naïo technologies can be seen below.
Naïo Technologies is a company that produces different types of weeding robots. They are suitable for different kinds of users and crops. The one thing that the different robots have in common is that they remove weeds by hoeing. This lets the robots stand out to the opposing companies and robots. The most imporant robots of Naïo technologies can be seen below.


[[File:1239037 333220810147280 1417854463 n.jpg|250px]]  [[File:Naio20Technologies20-20LD20-20Tien20TRAN-2.jpg|250px]] [[File:Robot-Ted-enjambeur-vignes-Tien-Tran-Naio-Technologies.jpeg|250px]]
[[File:1239037 333220810147280 1417854463 n.jpg|300px]]  [[File:Naio20Technologies20-20LD20-20Tien20TRAN-2.jpg|300px]] [[File:Robot-Ted-enjambeur-vignes-Tien-Tran-Naio-Technologies.jpeg|300px]]


The first robot is called 'Oz' and is suitable for smaller fields. The smalle battery driven robot has a maximum moving speed of 1.3 kilometers per hour. It follows the mounds via different optical sensors and RTK GPS. The robot can turn itself around to start independently with a new mound. It only uses about one euro worth of electricity to weed one hectare.
The first robot is called 'Oz' and is suitable for smaller fields. The smalle battery driven robot has a maximum moving speed of 1.3 kilometers per hour. It follows the mounds via different optical sensors and RTK GPS. The robot can turn itself around to start independently with a new mound. It only uses about one euro worth of electricity to weed one hectare.

Revision as of 12:32, 15 February 2017

Presentation 1:

Problem description Design of a system for argicultural application capable of reacting to data aquired from aerial photo's.


Objectives

The system must

       - use drones to aquire data
       - analyse the data
       - react to the results of the analysis

approach

       -research state of the art
       -abstract from state of the art
       -contact with user
       -Create model
       -analyse impact

USE aspects

       -Societal problem of hunger
       -Cheaper food for user
       -Cheaper then workers in the long run


State of the art automated argiculture

Weeding

There are some quite exciting technological developments going on in the area of automated weeding. The most important technologies will be discussed below.

Deepfield Weeding Robot

The first far-developed technology is the Deepfield Weeding robot of Bosch, see below.

3053230-slide-s-5-with-this-weeding-robot-farmers-dont-need-to-use-herbicides.jpg

This robot has GPS navigation to move through the fields with a 90% electrical efficiency. A row of linear actuators is attached to the bottom of the robot. When the robot detects weed is punched one of the actuators in the ground the destroy the little plant. The company claims that the positions accuracy is 2 mm and that it can remove 20 weeds per second. Given 40 weeds per square meter, the robot can process a hectare in three hours. The machine will cost about the same as a midsized tractor (http://www.dairyherd.com/news/german-company-demonstrates-automated-weeding-machine).

Advantages of this design:

  • Herbicide-free farming
  • Relative fast operation

Disadvantages of this design:

  • Only suitable for small weeds
  • Only suitable for field with small crops

There is also an other variant of this machine under development. This machine looks almost the same, but it does use herbicides. A greater working with of six to seven meters is possible with foldable booms. This machine will still lead to massive herbicide savings, but with a much bigger capacity potential.


LettuceBot

A company called Blue River created a robot which can identify weed and excess planted lettuce plants with the use of image recognition. When it is determined which plants need to be removed, the robot sprays a little amount of herbicide on it. This can result in a 90% reduction of use of perticides. Currently the robot is towed behind a conventional tractor, but Blue River is working on an fully automated version of the LettuceBot.

Future concept LettuceBot Current LettuceBot

While driving four miles per hour the precision is a quartile of an inch. The machine can process 40 acres per day and can cared for up to 5000 plants per minute. The machine also collects data about the plants when driving through the field to keep track of the growth and health of the plants.

Advantages of this design:

  • It is already a fully functioning machine
  • It is really fast

Disadvantages of this design:

  • It can only be used on lettuce
  • It isn't fully autonomous yet

Naïo Technologies

Naïo Technologies is a company that produces different types of weeding robots. They are suitable for different kinds of users and crops. The one thing that the different robots have in common is that they remove weeds by hoeing. This lets the robots stand out to the opposing companies and robots. The most imporant robots of Naïo technologies can be seen below.

1239037 333220810147280 1417854463 n.jpg Naio20Technologies20-20LD20-20Tien20TRAN-2.jpg Robot-Ted-enjambeur-vignes-Tien-Tran-Naio-Technologies.jpeg

The first robot is called 'Oz' and is suitable for smaller fields. The smalle battery driven robot has a maximum moving speed of 1.3 kilometers per hour. It follows the mounds via different optical sensors and RTK GPS. The robot can turn itself around to start independently with a new mound. It only uses about one euro worth of electricity to weed one hectare.

The second robot is created for bigger farms and uses the same techniques as the Oz robot.

The third robot is called 'Ted' and is used to weed vineyard. The maximum speed is four kilometer per hour and it can maintain a surface of about 25 hectares. This robot also shares the most techniques used in the other robots. The company is working on extending the capabilities of the robot with adding functionalities as mowing, leaf thinning and trimming.


References

       -Company that makes ground scans and 3D scans with drones: https://3dr.com/
       -Drones made for agriculture: https://www.sensefly.com/applications/agriculture.html
       -Drones that also map the ground: http://www.precisionhawk.com/
       -Examples of agriculture robots: https://www.intorobotics.com/35-robots-in-agriculture/
       -Some facts and companies analyzed: https://www.therobotreport.com/news/ag-in-transition-from-precision-ag-to-full-autonomy
       -Benefits analyzed: https://www.geospatialworld.net/article/drones-and-robots-future-agriculture/
       -Professors etc. giving their views: http://fruitworldmedia.com/index.php/featured/robots-huge-potential-robotics-agriculture-industry/
       -Japanse company that founded a fully autonomous indoor farm: http://spread.co.jp/en/sustainable-farming/
       -Project of the EU for percision lifestock farming: http://www.eu-plf.eu/index.php/publications/
       -eLeaf technology: http://www.eleaf.com/products-showcase-fruitlook#technology-pimapping
       -Automated precision weeding: http://www.bluerivert.com/
       -Case study of drones in argiculture https://blog.dronedeploy.com/case-study-ce39c9f44e48#.tsnfhikpp
       -Mechanical weeding robot http://link.springer.com/article/10.1023%2FA%3A1015674004201?LI=true
       -Seeding and fertilazation robot goo.gl/s2ehLC
       -Machine-to-machine communication goo.gl/UVJDFS
       -Framework for argicultural systems goo.gl/RGzsuo
       -Farmer in the Netherlands which uses the drone: http://www.loonbedrijfthijssen.nl/contact/
       -An other farmer in that uses drones: http://www.vandenborneaardappelen.com/
       -Bosch Weeding Robot: https://www.deepfield-robotics.com/en/Weeding.html